Associated, prime, and irreducible elements. #
Irreducible p
states that p
is non-unit and only factors into units.
We explicitly avoid stating that p
is non-zero, this would require a semiring. Assuming only a
monoid allows us to reuse irreducible for associated elements.
p
is not a unitif
p
factors then one factor is a unit
Instances For
If p
and q
are irreducible, then p ∣ q
implies q ∣ p
.
Two elements of a Monoid
are Associated
if one of them is another one
multiplied by a unit on the right.
Equations
- Associated x y = ∃ (u : αˣ), x * ↑u = y
Instances For
The setoid of the relation x ~ᵤ y
iff there is a unit u
such that x * u = y
Equations
- Associated.setoid α = { r := Associated, iseqv := ⋯ }
Instances For
Equations
- instDecidableRelAssociatedToMonoidToMonoidWithZero x✝ x = decidable_of_iff (x✝ ∣ x ∧ x ∣ x✝) ⋯
See also Irreducible.coprime_iff_not_dvd
.
The quotient of a monoid by the Associated
relation. Two elements x
and y
are associated iff there is a unit u
such that x * u = y
. There is a natural
monoid structure on Associates α
.
Equations
- Associates α = Quotient (Associated.setoid α)
Instances For
The canonical quotient map from a monoid α
into the Associates
of α
Equations
- Associates.mk a = ⟦a⟧
Instances For
Equations
- Associates.instInhabitedAssociates = { default := ⟦1⟧ }
Equations
- Associates.instOneAssociates = { one := ⟦1⟧ }
Equations
- Associates.instBotAssociates = { bot := 1 }
Equations
- Associates.instUniqueAssociates = { toInhabited := { default := 1 }, uniq := ⋯ }
Equations
- Associates.instMul = { mul := fun (a' b' : Associates α) => Quotient.liftOn₂ a' b' (fun (a b : α) => ⟦a * b⟧) ⋯ }
Equations
- Associates.instCommMonoid = CommMonoid.mk ⋯
Equations
- Associates.instPreorder = Preorder.mk ⋯ ⋯ ⋯
Associates.mk
as a MonoidHom
.
Equations
- Associates.mkMonoidHom = { toOneHom := { toFun := Associates.mk, map_one' := ⋯ }, map_mul' := ⋯ }
Instances For
Equations
- Associates.uniqueUnits = { toInhabited := { default := 1 }, uniq := ⋯ }
Equations
- Associates.instOrderBot = OrderBot.mk ⋯
Equations
- ⋯ = ⋯
Equations
- Associates.instZeroAssociates = { zero := ⟦0⟧ }
Equations
- Associates.instTopAssociates = { top := 0 }
Equations
- ⋯ = ⋯
Equations
- Associates.instCommMonoidWithZero = CommMonoidWithZero.mk ⋯ ⋯
Equations
- Associates.instOrderTop = OrderTop.mk ⋯
Equations
- Associates.instBoundedOrder = BoundedOrder.mk
Equations
- One or more equations did not get rendered due to their size.
Equations
- Associates.instPartialOrder = PartialOrder.mk ⋯
Equations
- Associates.instOrderedCommMonoid = OrderedCommMonoid.mk ⋯
Equations
- Associates.instCancelCommMonoidWithZero = let __src := inferInstance; CancelCommMonoidWithZero.mk
Equations
- Associates.instCanonicallyOrderedCommMonoidAssociatesToMonoidToMonoidWithZeroToCommMonoidWithZero = CanonicallyOrderedCommMonoid.mk ⋯ ⋯