Documentation

Mathlib.Algebra.Associated

Associated, prime, and irreducible elements. #

def Prime {α : Type u_1} [CommMonoidWithZero α] (p : α) :

prime element of a CommMonoidWithZero

Equations
theorem Prime.ne_zero {α : Type u_1} [CommMonoidWithZero α] {p : α} (hp : Prime p) :
p 0
theorem Prime.not_unit {α : Type u_1} [CommMonoidWithZero α] {p : α} (hp : Prime p) :
theorem Prime.not_dvd_one {α : Type u_1} [CommMonoidWithZero α] {p : α} (hp : Prime p) :
¬p 1
theorem Prime.ne_one {α : Type u_1} [CommMonoidWithZero α] {p : α} (hp : Prime p) :
p 1
theorem Prime.dvd_or_dvd {α : Type u_1} [CommMonoidWithZero α] {p : α} (hp : Prime p) {a : α} {b : α} (h : p a * b) :
p a p b
theorem Prime.dvd_mul {α : Type u_1} [CommMonoidWithZero α] {p : α} (hp : Prime p) {a : α} {b : α} :
p a * b p a p b
theorem Prime.isPrimal {α : Type u_1} [CommMonoidWithZero α] {p : α} (hp : Prime p) :
theorem Prime.not_dvd_mul {α : Type u_1} [CommMonoidWithZero α] {p : α} (hp : Prime p) {a : α} {b : α} (ha : ¬p a) (hb : ¬p b) :
¬p a * b
theorem Prime.dvd_of_dvd_pow {α : Type u_1} [CommMonoidWithZero α] {p : α} (hp : Prime p) {a : α} {n : } (h : p a ^ n) :
p a
theorem Prime.dvd_pow_iff_dvd {α : Type u_1} [CommMonoidWithZero α] {p : α} (hp : Prime p) {a : α} {n : } (hn : n 0) :
p a ^ n p a
@[simp]
theorem not_prime_zero {α : Type u_1} [CommMonoidWithZero α] :
@[simp]
theorem not_prime_one {α : Type u_1} [CommMonoidWithZero α] :
theorem comap_prime {α : Type u_1} {β : Type u_2} [CommMonoidWithZero α] [CommMonoidWithZero β] {F : Type u_5} {G : Type u_6} [FunLike F α β] [MonoidWithZeroHomClass F α β] [FunLike G β α] [MulHomClass G β α] (f : F) (g : G) {p : α} (hinv : ∀ (a : α), g (f a) = a) (hp : Prime (f p)) :
theorem MulEquiv.prime_iff {α : Type u_1} {β : Type u_2} [CommMonoidWithZero α] [CommMonoidWithZero β] {p : α} (e : α ≃* β) :
Prime p Prime (e p)
theorem Prime.left_dvd_or_dvd_right_of_dvd_mul {α : Type u_1} [CancelCommMonoidWithZero α] {p : α} (hp : Prime p) {a : α} {b : α} :
a p * bp a a b
theorem Prime.pow_dvd_of_dvd_mul_left {α : Type u_1} [CancelCommMonoidWithZero α] {p : α} {a : α} {b : α} (hp : Prime p) (n : ) (h : ¬p a) (h' : p ^ n a * b) :
p ^ n b
theorem Prime.pow_dvd_of_dvd_mul_right {α : Type u_1} [CancelCommMonoidWithZero α] {p : α} {a : α} {b : α} (hp : Prime p) (n : ) (h : ¬p b) (h' : p ^ n a * b) :
p ^ n a
theorem Prime.dvd_of_pow_dvd_pow_mul_pow_of_square_not_dvd {α : Type u_1} [CancelCommMonoidWithZero α] {p : α} {a : α} {b : α} {n : } (hp : Prime p) (hpow : p ^ Nat.succ n a ^ Nat.succ n * b ^ n) (hb : ¬p ^ 2 b) :
p a
theorem prime_pow_succ_dvd_mul {α : Type u_5} [CancelCommMonoidWithZero α] {p : α} {x : α} {y : α} (h : Prime p) {i : } (hxy : p ^ (i + 1) x * y) :
p ^ (i + 1) x p y
structure Irreducible {α : Type u_1} [Monoid α] (p : α) :

Irreducible p states that p is non-unit and only factors into units.

We explicitly avoid stating that p is non-zero, this would require a semiring. Assuming only a monoid allows us to reuse irreducible for associated elements.

  • not_unit : ¬IsUnit p

    p is not a unit

  • isUnit_or_isUnit' : ∀ (a b : α), p = a * bIsUnit a IsUnit b

    if p factors then one factor is a unit

theorem Irreducible.not_dvd_one {α : Type u_1} [CommMonoid α] {p : α} (hp : Irreducible p) :
¬p 1
theorem Irreducible.isUnit_or_isUnit {α : Type u_1} [Monoid α] {p : α} (hp : Irreducible p) {a : α} {b : α} (h : p = a * b) :
theorem irreducible_iff {α : Type u_1} [Monoid α] {p : α} :
Irreducible p ¬IsUnit p ∀ (a b : α), p = a * bIsUnit a IsUnit b
@[simp]
theorem not_irreducible_one {α : Type u_1} [Monoid α] :
theorem Irreducible.ne_one {α : Type u_1} [Monoid α] {p : α} :
Irreducible pp 1
@[simp]
theorem Irreducible.ne_zero {α : Type u_1} [MonoidWithZero α] {p : α} :
Irreducible pp 0
theorem of_irreducible_mul {α : Type u_5} [Monoid α] {x : α} {y : α} :
Irreducible (x * y)IsUnit x IsUnit y
theorem not_irreducible_pow {α : Type u_5} [Monoid α] {x : α} {n : } (hn : n 1) :
theorem irreducible_or_factor {α : Type u_5} [Monoid α] (x : α) (h : ¬IsUnit x) :
Irreducible x ∃ (a : α), ∃ (b : α), ¬IsUnit a ¬IsUnit b a * b = x
theorem Irreducible.dvd_symm {α : Type u_1} [Monoid α] {p : α} {q : α} (hp : Irreducible p) (hq : Irreducible q) :
p qq p

If p and q are irreducible, then p ∣ q implies q ∣ p.

theorem Irreducible.dvd_comm {α : Type u_1} [Monoid α] {p : α} {q : α} (hp : Irreducible p) (hq : Irreducible q) :
p q q p
theorem irreducible_units_mul {α : Type u_1} [Monoid α] (a : αˣ) (b : α) :
theorem irreducible_isUnit_mul {α : Type u_1} [Monoid α] {a : α} {b : α} (h : IsUnit a) :
theorem irreducible_mul_units {α : Type u_1} [Monoid α] (a : αˣ) (b : α) :
theorem irreducible_mul_isUnit {α : Type u_1} [Monoid α] {a : α} {b : α} (h : IsUnit a) :
theorem irreducible_mul_iff {α : Type u_1} [Monoid α] {a : α} {b : α} :
theorem Irreducible.not_square {α : Type u_1} [CommMonoid α] {a : α} (ha : Irreducible a) :
theorem IsSquare.not_irreducible {α : Type u_1} [CommMonoid α] {a : α} (ha : IsSquare a) :
theorem Irreducible.prime_of_isPrimal {α : Type u_1} [CommMonoidWithZero α] {a : α} (irr : Irreducible a) (primal : IsPrimal a) :
theorem Irreducible.prime {α : Type u_1} [CommMonoidWithZero α] [DecompositionMonoid α] {a : α} (irr : Irreducible a) :
theorem Prime.irreducible {α : Type u_1} [CancelCommMonoidWithZero α] {p : α} (hp : Prime p) :
theorem succ_dvd_or_succ_dvd_of_succ_sum_dvd_mul {α : Type u_1} [CancelCommMonoidWithZero α] {p : α} (hp : Prime p) {a : α} {b : α} {k : } {l : } :
p ^ k ap ^ l bp ^ (k + l + 1) a * bp ^ (k + 1) a p ^ (l + 1) b
theorem Prime.not_square {α : Type u_1} [CancelCommMonoidWithZero α] {p : α} (hp : Prime p) :
theorem IsSquare.not_prime {α : Type u_1} [CancelCommMonoidWithZero α] {a : α} (ha : IsSquare a) :
theorem not_prime_pow {α : Type u_1} [CancelCommMonoidWithZero α] {a : α} {n : } (hn : n 1) :
¬Prime (a ^ n)
def Associated {α : Type u_1} [Monoid α] (x : α) (y : α) :

Two elements of a Monoid are Associated if one of them is another one multiplied by a unit on the right.

Equations
Instances For
theorem Associated.refl {α : Type u_1} [Monoid α] (x : α) :
instance Associated.instIsReflAssociated {α : Type u_1} [Monoid α] :
IsRefl α Associated
Equations
  • =
theorem Associated.symm {α : Type u_1} [Monoid α] {x : α} {y : α} :
instance Associated.instIsSymmAssociated {α : Type u_1} [Monoid α] :
IsSymm α Associated
Equations
  • =
theorem Associated.comm {α : Type u_1} [Monoid α] {x : α} {y : α} :
theorem Associated.trans {α : Type u_1} [Monoid α] {x : α} {y : α} {z : α} :
Associated x yAssociated y zAssociated x z
instance Associated.instIsTransAssociated {α : Type u_1} [Monoid α] :
IsTrans α Associated
Equations
  • =
def Associated.setoid (α : Type u_5) [Monoid α] :

The setoid of the relation x ~ᵤ y iff there is a unit u such that x * u = y

Equations
theorem Associated.map {M : Type u_5} {N : Type u_6} [Monoid M] [Monoid N] {F : Type u_7} [FunLike F M N] [MonoidHomClass F M N] (f : F) {x : M} {y : M} (ha : Associated x y) :
Associated (f x) (f y)
theorem unit_associated_one {α : Type u_1} [Monoid α] {u : αˣ} :
Associated (u) 1
theorem associated_one_iff_isUnit {α : Type u_1} [Monoid α] {a : α} :
theorem associated_zero_iff_eq_zero {α : Type u_1} [MonoidWithZero α] (a : α) :
Associated a 0 a = 0
theorem associated_one_of_mul_eq_one {α : Type u_1} [CommMonoid α] {a : α} (b : α) (hab : a * b = 1) :
theorem associated_one_of_associated_mul_one {α : Type u_1} [CommMonoid α] {a : α} {b : α} :
Associated (a * b) 1Associated a 1
theorem associated_mul_unit_left {β : Type u_5} [Monoid β] (a : β) (u : β) (hu : IsUnit u) :
Associated (a * u) a
theorem associated_unit_mul_left {β : Type u_5} [CommMonoid β] (a : β) (u : β) (hu : IsUnit u) :
Associated (u * a) a
theorem associated_mul_unit_right {β : Type u_5} [Monoid β] (a : β) (u : β) (hu : IsUnit u) :
Associated a (a * u)
theorem associated_unit_mul_right {β : Type u_5} [CommMonoid β] (a : β) (u : β) (hu : IsUnit u) :
Associated a (u * a)
theorem associated_mul_isUnit_left_iff {β : Type u_5} [Monoid β] {a : β} {u : β} {b : β} (hu : IsUnit u) :
theorem associated_isUnit_mul_left_iff {β : Type u_5} [CommMonoid β] {u : β} {a : β} {b : β} (hu : IsUnit u) :
theorem associated_mul_isUnit_right_iff {β : Type u_5} [Monoid β] {a : β} {b : β} {u : β} (hu : IsUnit u) :
theorem associated_isUnit_mul_right_iff {β : Type u_5} [CommMonoid β] {a : β} {u : β} {b : β} (hu : IsUnit u) :
@[simp]
theorem associated_mul_unit_left_iff {β : Type u_5} [Monoid β] {a : β} {b : β} {u : βˣ} :
Associated (a * u) b Associated a b
@[simp]
theorem associated_unit_mul_left_iff {β : Type u_5} [CommMonoid β] {a : β} {b : β} {u : βˣ} :
Associated (u * a) b Associated a b
@[simp]
theorem associated_mul_unit_right_iff {β : Type u_5} [Monoid β] {a : β} {b : β} {u : βˣ} :
Associated a (b * u) Associated a b
@[simp]
theorem associated_unit_mul_right_iff {β : Type u_5} [CommMonoid β] {a : β} {b : β} {u : βˣ} :
Associated a (u * b) Associated a b
theorem Associated.mul_left {α : Type u_1} [Monoid α] (a : α) {b : α} {c : α} (h : Associated b c) :
Associated (a * b) (a * c)
theorem Associated.mul_right {α : Type u_1} [CommMonoid α] {a : α} {b : α} (h : Associated a b) (c : α) :
Associated (a * c) (b * c)
theorem Associated.mul_mul {α : Type u_1} [CommMonoid α] {a₁ : α} {a₂ : α} {b₁ : α} {b₂ : α} (h₁ : Associated a₁ b₁) (h₂ : Associated a₂ b₂) :
Associated (a₁ * a₂) (b₁ * b₂)
theorem Associated.pow_pow {α : Type u_1} [CommMonoid α] {a : α} {b : α} {n : } (h : Associated a b) :
Associated (a ^ n) (b ^ n)
theorem Associated.dvd {α : Type u_1} [Monoid α] {a : α} {b : α} :
Associated a ba b
theorem Associated.dvd_dvd {α : Type u_1} [Monoid α] {a : α} {b : α} (h : Associated a b) :
a b b a
theorem associated_of_dvd_dvd {α : Type u_1} [CancelMonoidWithZero α] {a : α} {b : α} (hab : a b) (hba : b a) :
theorem dvd_dvd_iff_associated {α : Type u_1} [CancelMonoidWithZero α] {a : α} {b : α} :
a b b a Associated a b
theorem Associated.dvd_iff_dvd_left {α : Type u_1} [Monoid α] {a : α} {b : α} {c : α} (h : Associated a b) :
a c b c
theorem Associated.dvd_iff_dvd_right {α : Type u_1} [Monoid α] {a : α} {b : α} {c : α} (h : Associated b c) :
a b a c
theorem Associated.eq_zero_iff {α : Type u_1} [MonoidWithZero α] {a : α} {b : α} (h : Associated a b) :
a = 0 b = 0
theorem Associated.ne_zero_iff {α : Type u_1} [MonoidWithZero α] {a : α} {b : α} (h : Associated a b) :
a 0 b 0
theorem Associated.prime {α : Type u_1} [CommMonoidWithZero α] {p : α} {q : α} (h : Associated p q) (hp : Prime p) :
theorem prime_mul_iff {α : Type u_1} [CancelCommMonoidWithZero α] {x : α} {y : α} :
@[simp]
theorem prime_pow_iff {α : Type u_1} [CancelCommMonoidWithZero α] {p : α} {n : } :
Prime (p ^ n) Prime p n = 1
theorem Irreducible.dvd_iff {α : Type u_1} [Monoid α] {x : α} {y : α} (hx : Irreducible x) :
theorem Irreducible.associated_of_dvd {α : Type u_1} [Monoid α] {p : α} {q : α} (p_irr : Irreducible p) (q_irr : Irreducible q) (dvd : p q) :
theorem Irreducible.dvd_irreducible_iff_associated {α : Type u_1} [Monoid α] {p : α} {q : α} (pp : Irreducible p) (qp : Irreducible q) :
theorem Prime.associated_of_dvd {α : Type u_1} [CancelCommMonoidWithZero α] {p : α} {q : α} (p_prime : Prime p) (q_prime : Prime q) (dvd : p q) :
theorem Prime.dvd_prime_iff_associated {α : Type u_1} [CancelCommMonoidWithZero α] {p : α} {q : α} (pp : Prime p) (qp : Prime q) :
theorem Associated.prime_iff {α : Type u_1} [CommMonoidWithZero α] {p : α} {q : α} (h : Associated p q) :
theorem Associated.isUnit {α : Type u_1} [Monoid α] {a : α} {b : α} (h : Associated a b) :
IsUnit aIsUnit b
theorem Associated.isUnit_iff {α : Type u_1} [Monoid α] {a : α} {b : α} (h : Associated a b) :
theorem Irreducible.isUnit_iff_not_associated_of_dvd {α : Type u_1} [Monoid α] {x : α} {y : α} (hx : Irreducible x) (hy : y x) :
theorem Associated.irreducible {α : Type u_1} [Monoid α] {p : α} {q : α} (h : Associated p q) (hp : Irreducible p) :
theorem Associated.irreducible_iff {α : Type u_1} [Monoid α] {p : α} {q : α} (h : Associated p q) :
theorem Associated.of_mul_left {α : Type u_1} [CancelCommMonoidWithZero α] {a : α} {b : α} {c : α} {d : α} (h : Associated (a * b) (c * d)) (h₁ : Associated a c) (ha : a 0) :
theorem Associated.of_mul_right {α : Type u_1} [CancelCommMonoidWithZero α] {a : α} {b : α} {c : α} {d : α} :
Associated (a * b) (c * d)Associated b db 0Associated a c
theorem Associated.of_pow_associated_of_prime {α : Type u_1} [CancelCommMonoidWithZero α] {p₁ : α} {p₂ : α} {k₁ : } {k₂ : } (hp₁ : Prime p₁) (hp₂ : Prime p₂) (hk₁ : 0 < k₁) (h : Associated (p₁ ^ k₁) (p₂ ^ k₂)) :
Associated p₁ p₂
theorem Associated.of_pow_associated_of_prime' {α : Type u_1} [CancelCommMonoidWithZero α] {p₁ : α} {p₂ : α} {k₁ : } {k₂ : } (hp₁ : Prime p₁) (hp₂ : Prime p₂) (hk₂ : 0 < k₂) (h : Associated (p₁ ^ k₁) (p₂ ^ k₂)) :
Associated p₁ p₂
theorem Irreducible.isRelPrime_iff_not_dvd {α : Type u_1} [Monoid α] {p : α} {n : α} (hp : Irreducible p) :

See also Irreducible.coprime_iff_not_dvd.

theorem Irreducible.dvd_or_isRelPrime {α : Type u_1} [Monoid α] {p : α} {n : α} (hp : Irreducible p) :
theorem associated_iff_eq {α : Type u_1} [Monoid α] [Unique αˣ] {x : α} {y : α} :
Associated x y x = y
theorem associated_eq_eq {α : Type u_1} [Monoid α] [Unique αˣ] :
Associated = Eq
theorem prime_dvd_prime_iff_eq {M : Type u_5} [CancelCommMonoidWithZero M] [Unique Mˣ] {p : M} {q : M} (pp : Prime p) (qp : Prime q) :
p q p = q
theorem eq_of_prime_pow_eq {R : Type u_5} [CancelCommMonoidWithZero R] [Unique Rˣ] {p₁ : R} {p₂ : R} {k₁ : } {k₂ : } (hp₁ : Prime p₁) (hp₂ : Prime p₂) (hk₁ : 0 < k₁) (h : p₁ ^ k₁ = p₂ ^ k₂) :
p₁ = p₂
theorem eq_of_prime_pow_eq' {R : Type u_5} [CancelCommMonoidWithZero R] [Unique Rˣ] {p₁ : R} {p₂ : R} {k₁ : } {k₂ : } (hp₁ : Prime p₁) (hp₂ : Prime p₂) (hk₁ : 0 < k₂) (h : p₁ ^ k₁ = p₂ ^ k₂) :
p₁ = p₂
@[inline, reducible]
abbrev Associates.mk {α : Type u_5} [Monoid α] (a : α) :

The canonical quotient map from a monoid α into the Associates of α

Equations
Equations
  • Associates.instInhabitedAssociates = { default := 1 }
theorem Associates.quotient_mk_eq_mk {α : Type u_1} [Monoid α] (a : α) :
a = Associates.mk a
theorem Associates.quot_mk_eq_mk {α : Type u_1} [Monoid α] (a : α) :
Quot.mk Setoid.r a = Associates.mk a
@[simp]
theorem Associates.quot_out {α : Type u_1} [Monoid α] (a : Associates α) :
theorem Associates.forall_associated {α : Type u_1} [Monoid α] {p : Associates αProp} :
(∀ (a : Associates α), p a) ∀ (a : α), p (Associates.mk a)
theorem Associates.mk_surjective {α : Type u_1} [Monoid α] :
Function.Surjective Associates.mk
instance Associates.instOneAssociates {α : Type u_1} [Monoid α] :
Equations
  • Associates.instOneAssociates = { one := 1 }
@[simp]
theorem Associates.mk_one {α : Type u_1} [Monoid α] :
instance Associates.instBotAssociates {α : Type u_1} [Monoid α] :
Equations
  • Associates.instBotAssociates = { bot := 1 }
theorem Associates.bot_eq_one {α : Type u_1} [Monoid α] :
= 1
theorem Associates.exists_rep {α : Type u_1} [Monoid α] (a : Associates α) :
∃ (a0 : α), Associates.mk a0 = a
Equations
  • Associates.instUniqueAssociates = { toInhabited := { default := 1 }, uniq := }
theorem Associates.mk_injective {α : Type u_1} [Monoid α] [Unique αˣ] :
Function.Injective Associates.mk
instance Associates.instMul {α : Type u_1} [CommMonoid α] :
Equations
theorem Associates.mk_mul_mk {α : Type u_1} [CommMonoid α] {x : α} {y : α} :
Equations
Equations

Associates.mk as a MonoidHom.

Equations
  • Associates.mkMonoidHom = { toOneHom := { toFun := Associates.mk, map_one' := }, map_mul' := }
@[simp]
theorem Associates.mkMonoidHom_apply {α : Type u_1} [CommMonoid α] (a : α) :
Associates.mkMonoidHom a = Associates.mk a
theorem Associates.associated_map_mk {α : Type u_1} [CommMonoid α] {f : Associates α →* α} (hinv : Function.RightInverse (f) Associates.mk) (a : α) :
theorem Associates.mk_pow {α : Type u_1} [CommMonoid α] (a : α) (n : ) :
theorem Associates.dvd_eq_le {α : Type u_1} [CommMonoid α] :
(fun (x x_1 : Associates α) => x x_1) = fun (x x_1 : Associates α) => x x_1
theorem Associates.mul_eq_one_iff {α : Type u_1} [CommMonoid α] {x : Associates α} {y : Associates α} :
x * y = 1 x = 1 y = 1
theorem Associates.units_eq_one {α : Type u_1} [CommMonoid α] (u : (Associates α)ˣ) :
u = 1
Equations
  • Associates.uniqueUnits = { toInhabited := { default := 1 }, uniq := }
@[simp]
theorem Associates.coe_unit_eq_one {α : Type u_1} [CommMonoid α] (u : (Associates α)ˣ) :
u = 1
theorem Associates.isUnit_iff_eq_one {α : Type u_1} [CommMonoid α] (a : Associates α) :
IsUnit a a = 1
theorem Associates.isUnit_mk {α : Type u_1} [CommMonoid α] {a : α} :
theorem Associates.mul_mono {α : Type u_1} [CommMonoid α] {a : Associates α} {b : Associates α} {c : Associates α} {d : Associates α} (h₁ : a b) (h₂ : c d) :
a * c b * d
theorem Associates.one_le {α : Type u_1} [CommMonoid α] {a : Associates α} :
1 a
theorem Associates.le_mul_right {α : Type u_1} [CommMonoid α] {a : Associates α} {b : Associates α} :
a a * b
theorem Associates.le_mul_left {α : Type u_1} [CommMonoid α] {a : Associates α} {b : Associates α} :
a b * a
Equations
theorem Associates.dvd_of_mk_le_mk {α : Type u_1} [CommMonoid α] {a : α} {b : α} :
theorem Associates.mk_le_mk_of_dvd {α : Type u_1} [CommMonoid α] {a : α} {b : α} :
theorem Associates.mk_le_mk_iff_dvd_iff {α : Type u_1} [CommMonoid α] {a : α} {b : α} :
theorem Associates.mk_dvd_mk {α : Type u_1} [CommMonoid α] {a : α} {b : α} :
instance Associates.instZeroAssociates {α : Type u_1} [Zero α] [Monoid α] :
Equations
  • Associates.instZeroAssociates = { zero := 0 }
instance Associates.instTopAssociates {α : Type u_1} [Zero α] [Monoid α] :
Equations
  • Associates.instTopAssociates = { top := 0 }
@[simp]
theorem Associates.mk_eq_zero {α : Type u_1} [MonoidWithZero α] {a : α} :
theorem Associates.mk_ne_zero {α : Type u_1} [MonoidWithZero α] {a : α} :
theorem Associates.exists_non_zero_rep {α : Type u_1} [MonoidWithZero α] {a : Associates α} :
a 0∃ (a0 : α), a0 0 Associates.mk a0 = a
Equations
Equations
Equations
  • Associates.instBoundedOrder = BoundedOrder.mk
Equations
  • One or more equations did not get rendered due to their size.
theorem Associates.Prime.le_or_le {α : Type u_1} [CommMonoidWithZero α] {p : Associates α} (hp : Prime p) {a : Associates α} {b : Associates α} (h : p a * b) :
p a p b
theorem Associates.dvdNotUnit_of_lt {α : Type u_1} [CommMonoidWithZero α] {a : Associates α} {b : Associates α} (hlt : a < b) :
Equations
Equations
Equations
  • Associates.instCancelCommMonoidWithZero = let __src := inferInstance; CancelCommMonoidWithZero.mk
theorem Associates.le_of_mul_le_mul_left {α : Type u_1} [CancelCommMonoidWithZero α] (a : Associates α) (b : Associates α) (c : Associates α) (ha : a 0) :
a * b a * cb c
theorem Associates.one_or_eq_of_le_of_prime {α : Type u_1} [CancelCommMonoidWithZero α] (p : Associates α) (m : Associates α) :
Prime pm pm = 1 m = p
Equations
theorem Associates.le_one_iff {α : Type u_1} [CancelCommMonoidWithZero α] {p : Associates α} :
p 1 p = 1
theorem DvdNotUnit.isUnit_of_irreducible_right {α : Type u_1} [CommMonoidWithZero α] {p : α} {q : α} (h : DvdNotUnit p q) (hq : Irreducible q) :
theorem not_irreducible_of_not_unit_dvdNotUnit {α : Type u_1} [CommMonoidWithZero α] {p : α} {q : α} (hp : ¬IsUnit p) (h : DvdNotUnit p q) :
theorem DvdNotUnit.not_unit {α : Type u_1} [CommMonoidWithZero α] {p : α} {q : α} (hp : DvdNotUnit p q) :
theorem dvdNotUnit_of_dvdNotUnit_associated {α : Type u_1} [CommMonoidWithZero α] [Nontrivial α] {p : α} {q : α} {r : α} (h : DvdNotUnit p q) (h' : Associated q r) :
theorem isUnit_of_associated_mul {α : Type u_1} [CancelCommMonoidWithZero α] {p : α} {b : α} (h : Associated (p * b) p) (hp : p 0) :
theorem DvdNotUnit.not_associated {α : Type u_1} [CancelCommMonoidWithZero α] {p : α} {q : α} (h : DvdNotUnit p q) :
theorem DvdNotUnit.ne {α : Type u_1} [CancelCommMonoidWithZero α] {p : α} {q : α} (h : DvdNotUnit p q) :
p q
theorem pow_injective_of_not_unit {α : Type u_1} [CancelCommMonoidWithZero α] {q : α} (hq : ¬IsUnit q) (hq' : q 0) :
Function.Injective fun (n : ) => q ^ n
theorem dvd_prime_pow {α : Type u_1} [CancelCommMonoidWithZero α] {p : α} {q : α} (hp : Prime p) (n : ) :
q p ^ n ∃ (i : ), i n Associated q (p ^ i)