⊤ and ⊥, bounded lattices and variants #
This file defines top and bottom elements (greatest and least elements) of a type, the bounded
variants of different kinds of lattices, sets up the typeclass hierarchy between them and provides
instances for Prop
and fun
.
Main declarations #
<Top/Bot> α
: Typeclasses to declare the⊤
/⊥
notation.Order<Top/Bot> α
: Order with a top/bottom element.BoundedOrder α
: Order with a top and bottom element.
Common lattices #
- Distributive lattices with a bottom element. Notated by
[DistribLattice α] [OrderBot α]
It captures the properties ofDisjoint
that are common toGeneralizedBooleanAlgebra
andDistribLattice
whenOrderBot
. - Bounded and distributive lattice. Notated by
[DistribLattice α] [BoundedOrder α]
. Typical examples includeProp
andDet α
.
Top, bottom element #
An order is an OrderTop
if it has a greatest element.
We state this using a data mixin, holding the value of ⊤
and the greatest element constraint.
- top : α
⊤
is the greatest element
Instances
- Additive.orderTop
- Associates.instOrderTop
- ENat.instOrderTopENatToLEToPreorderToPartialOrderToOrderedSemiringToOrderedCommSemiringInstENatCanonicallyOrderedCommSemiring
- Flag.instOrderTopSubtypeMemFlagToLEInstMembershipInstSetLikeFlagLe
- InfHom.instOrderTopInfHomToInfToLEToPreorderToPartialOrderInstSemilatticeInfInfHomToInf
- InfTopHom.instOrderTopInfTopHomToInfToTopToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeInfInfTopHomToInfToTopToLEToPreorderToPartialOrder
- MeasureTheory.SimpleFunc.instOrderTop
- Multiplicative.orderTop
- OrderDual.instOrderTop
- OrderHom.orderTop
- Ordinal.orderTopOutSucc
- PartENat.orderTop
- Pi.instOrderTop
- Pi.instOrderTopLexForAllToLEToPreorderInstPartialOrderLexForAll
- Prod.Lex.orderTop
- Prod.instOrderTop
- Set.Ici.orderTop
- Set.Iic.orderTop
- Set.instOrderTopSetInstLESet
- Submodule.instOrderTopSubmoduleToLEToPreorderInstPartialOrderSetLike
- Sum.Lex.orderTop
- SupHom.instOrderTopSupHomToSupToLEToPreorderToPartialOrderInstSemilatticeSupSupHomToSup
- TopHom.instOrderTopTopHomToTopToLEToLEInstPreorderTopHom
- TopologicalSpace.OpenNhdsOf.instOrderTopOpenNhdsOfToLEToPreorderInstPartialOrderInstSetLikeOpenNhdsOf
- ULift.instOrderTopULiftInstLEULift
- WithBot.orderTop
- WithTop.orderTop
- sInfHom.instOrderTopSInfHomToInfSetToLEToPreorderInstPartialOrderSInfHomToInfSet
An order is (noncomputably) either an OrderTop
or a NoTopOrder
. Use as
casesI topOrderOrNoTopOrder α
.
Equations
- topOrderOrNoTopOrder α = if H : ∀ (a : α), ∃ (b : α), ¬b ≤ a then PSum.inr ⋯ else PSum.inl (OrderTop.mk ⋯)
Alias of ne_top_of_lt
.
Alias of the forward direction of isMax_iff_eq_top
.
Alias of the forward direction of isTop_iff_eq_top
.
An order is an OrderBot
if it has a least element.
We state this using a data mixin, holding the value of ⊥
and the least element constraint.
- bot : α
⊥
is the least element
Instances
- Additive.orderBot
- Associates.instOrderBot
- BotHom.instOrderBotBotHomToBotToLEToLEInstPreorderBotHom
- ConditionallyCompleteLinearOrderBot.toOrderBot
- ENNReal.instOrderBotENNRealToLEToPreorderToPartialOrderToSemilatticeInfToLatticeInstENNRealDistribLattice
- ENat.instOrderBotENatToLEToPreorderToPartialOrderToOrderedSemiringToOrderedCommSemiringInstENatCanonicallyOrderedCommSemiring
- Finset.instOrderBotFinsetToLEToPreorderPartialOrder
- Finsupp.orderBot
- Flag.instOrderBotSubtypeMemFlagToLEInstMembershipInstSetLikeFlagLe
- GeneralizedBooleanAlgebra.toOrderBot
- IdemSemiring.toOrderBot
- InfHom.instOrderBotInfHomToInfToLEToPreorderToPartialOrderInstSemilatticeInfInfHomToInf
- IntermediateField.instOrderBotLiftsToLEToPreorderInstPartialOrderLifts
- LinearPMap.orderBot
- MeasureTheory.OuterMeasure.orderBot
- MeasureTheory.SimpleFunc.instOrderBot
- Multiplicative.orderBot
- Multiset.instOrderBotMultisetToLEToPreorderInstPartialOrderMultiset
- NNReal.instOrderBotNNRealToLEToPreorderToPartialOrderInstNNRealStrictOrderedSemiring
- Nat.Subtype.orderBot
- Nat.orderBot
- Nonneg.orderBot
- OrderDual.instOrderBot
- OrderHom.orderBot
- Ordinal.orderBot
- PEquiv.instOrderBotPEquivToLEToPreorderInstPartialOrderPEquiv
- PNat.instOrderBot
- Part.instOrderBotPartToLEToPreorderInstPartialOrderPart
- PartENat.orderBot
- Pi.instOrderBot
- Pi.instOrderBotLexForAllToLEToPreorderInstPartialOrderLexForAll
- Prod.Lex.orderBot
- Prod.instOrderBot
- Seminorm.instOrderBot
- Set.Ici.orderBot
- Set.Iic.orderBot
- Submodule.instOrderBotSubmoduleToLEToPreorderInstPartialOrderSetLike
- Sum.Lex.orderBot
- SupBotHom.instOrderBotSupBotHomToSupToBotToLEToPreorderToPartialOrderToLEToPreorderToPartialOrderInstSemilatticeSupSupBotHomToSupToBotToLEToPreorderToPartialOrder
- SupHom.instOrderBotSupHomToSupToLEToPreorderToPartialOrderInstSemilatticeSupSupHomToSup
- ULift.instOrderBotULiftInstLEULift
- WithBot.orderBot
- WithTop.orderBot
- WithZero.orderBot
- instOrderBotSetSemiringToLEToPreorderInstPartialOrderSetSemiring
- sSupHom.instOrderBotSSupHomToSupSetToLEToPreorderInstPartialOrderSSupHomToSupSet
An order is (noncomputably) either an OrderBot
or a NoBotOrder
. Use as
casesI botOrderOrNoBotOrder α
.
Equations
- botOrderOrNoBotOrder α = if H : ∀ (a : α), ∃ (b : α), ¬a ≤ b then PSum.inr ⋯ else PSum.inl (OrderBot.mk ⋯)
Equations
- OrderDual.instTop α = { top := ⊥ }
Equations
- OrderDual.instBot α = { bot := ⊤ }
Equations
- OrderDual.instOrderTop α = let __spread.0 := inferInstanceAs (Top αᵒᵈ); OrderTop.mk ⋯
Equations
- OrderDual.instOrderBot α = let __spread.0 := inferInstanceAs (Bot αᵒᵈ); OrderBot.mk ⋯
Alias of ne_bot_of_gt
.
Alias of the forward direction of isMin_iff_eq_bot
.
Alias of the forward direction of isBot_iff_eq_bot
.
Bounded order #
A bounded order describes an order (≤)
with a top and bottom element,
denoted ⊤
and ⊥
respectively.
Instances
- AddGroupTopology.instBoundedOrderAddGroupTopologyToLEToPreorderInstPartialOrderAddGroupTopology
- Additive.boundedOrder
- Associates.instBoundedOrder
- Bool.instBoundedOrder
- BooleanAlgebra.toBoundedOrder
- CoheytingAlgebra.toBoundedOrder
- Complementeds.instBoundedOrderComplementedsLeToLEToPreorderToPartialOrderToSemilatticeInfIsComplemented
- CompleteLattice.toBoundedOrder
- ENNReal.instBoundedOrderENNRealToLEToPreorderToPartialOrderToSemilatticeInfToLatticeInstENNRealDistribLattice
- Fin.instBoundedOrderFinHAddNatInstHAddInstAddNatOfNatInstLEFin
- Finset.boundedOrder
- Flag.instBoundedOrderSubtypeMemFlagToLEInstMembershipInstSetLikeFlagLe
- GroupTopology.instBoundedOrderGroupTopologyToLEToPreorderInstPartialOrderGroupTopology
- HeytingAlgebra.toBoundedOrder
- InfHom.instBoundedOrderInfHomToInfToLEToPreorderToPartialOrderInstSemilatticeInfInfHomToInf
- MeasureTheory.SimpleFunc.instBoundedOrder
- Multiplicative.boundedOrder
- OrderDual.instBoundedOrder
- PartENat.boundedOrder
- Pi.instBoundedOrder
- Pi.instBoundedOrderLexForAllToLEToPreorderInstPartialOrderLexForAll
- Prod.Lex.boundedOrder
- Prod.instBoundedOrder
- Prop.instBoundedOrder
- Set.Ici.boundedOrder
- Set.Iic.instBoundedOrderElemIicLeToLEMemSetInstMembershipSet
- SignType.instBoundedOrderSignTypeInstLESignType
- Sum.Lex.boundedOrder
- SupHom.instBoundedOrderSupHomToSupToLEToPreorderToPartialOrderInstSemilatticeSupSupHomToSup
- ULift.instBoundedOrderULiftInstLEULift
- WithBot.instBoundedOrder
- WithTop.boundedOrder
- unitInterval.instBoundedOrderElemRealUnitIntervalLeInstLERealMemSetInstMembershipSet
Equations
- OrderDual.instBoundedOrder α = let __spread.0 := inferInstanceAs (OrderTop αᵒᵈ); let __spread.1 := inferInstanceAs (OrderBot αᵒᵈ); BoundedOrder.mk
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
In this section we prove some properties about monotone and antitone operations on Prop
#
Function lattices #
Equations
- Pi.instOrderTop = OrderTop.mk ⋯
Equations
- Pi.instOrderBot = OrderBot.mk ⋯
Equations
- Pi.instBoundedOrder = let __spread.0 := inferInstanceAs (OrderTop ((i : ι) → α' i)); let __spread.1 := inferInstanceAs (OrderBot ((i : ι) → α' i)); BoundedOrder.mk
Pullback a BoundedOrder
.
Equations
- BoundedOrder.lift f map_le map_top map_bot = let __spread.0 := OrderTop.lift f map_le map_top; let __spread.1 := OrderBot.lift f map_le map_bot; BoundedOrder.mk
Subtype, order dual, product lattices #
A subtype remains a ⊥
-order if the property holds at ⊥
.
Equations
- Subtype.orderBot hbot = OrderBot.mk ⋯
A subtype remains a ⊤
-order if the property holds at ⊤
.
Equations
- Subtype.orderTop htop = OrderTop.mk ⋯
A subtype remains a bounded order if the property holds at ⊥
and ⊤
.
Equations
- Subtype.boundedOrder hbot htop = let __spread.0 := Subtype.orderTop htop; let __spread.1 := Subtype.orderBot hbot; BoundedOrder.mk
Equations
- Prod.instOrderTop α β = let __spread.0 := inferInstanceAs (Top (α × β)); OrderTop.mk ⋯
Equations
- Prod.instOrderBot α β = let __spread.0 := inferInstanceAs (Bot (α × β)); OrderBot.mk ⋯
Equations
- Prod.instBoundedOrder α β = let __spread.0 := inferInstanceAs (OrderTop (α × β)); let __spread.1 := inferInstanceAs (OrderBot (α × β)); BoundedOrder.mk
Equations
- ULift.instOrderBotULiftInstLEULift = OrderBot.lift ULift.down ⋯ ⋯
Equations
- ULift.instOrderTopULiftInstLEULift = OrderTop.lift ULift.down ⋯ ⋯
Equations
- ULift.instBoundedOrderULiftInstLEULift = BoundedOrder.mk
Equations
- Bool.instBoundedOrder = BoundedOrder.mk