Characteristic zero (additional theorems) #
A ring R
is called of characteristic zero if every natural number n
is non-zero when considered
as an element of R
. Since this definition doesn't mention the multiplicative structure of R
except for the existence of 1
in this file characteristic zero is defined for additive monoids
with 1
.
Main statements #
- Characteristic zero implies that the additive monoid is infinite.
@[simp]
Equations
- ⋯ = ⋯
theorem
Function.support_nat_cast
{α : Type u_1}
{M : Type u_2}
[AddMonoidWithOne M]
[CharZero M]
{n : ℕ}
(hn : n ≠ 0)
:
Function.support ↑n = Set.univ
theorem
Function.mulSupport_nat_cast
{α : Type u_1}
{M : Type u_2}
[AddMonoidWithOne M]
[CharZero M]
{n : ℕ}
(hn : n ≠ 1)
:
Function.mulSupport ↑n = Set.univ
@[simp]
theorem
add_self_eq_zero
{R : Type u_1}
[NonAssocSemiring R]
[NoZeroDivisors R]
[CharZero R]
{a : R}
:
@[simp]
@[simp]
@[simp]
@[simp]
theorem
nat_mul_inj
{R : Type u_1}
[NonAssocRing R]
[NoZeroDivisors R]
[CharZero R]
{n : ℕ}
{a : R}
{b : R}
(h : ↑n * a = ↑n * b)
:
theorem
nat_mul_inj'
{R : Type u_1}
[NonAssocRing R]
[NoZeroDivisors R]
[CharZero R]
{n : ℕ}
{a : R}
{b : R}
(h : ↑n * a = ↑n * b)
(w : n ≠ 0)
:
a = b
theorem
bit0_injective
{R : Type u_1}
[NonAssocRing R]
[NoZeroDivisors R]
[CharZero R]
:
Function.Injective bit0
theorem
bit1_injective
{R : Type u_1}
[NonAssocRing R]
[NoZeroDivisors R]
[CharZero R]
:
Function.Injective bit1
@[simp]
theorem
bit0_eq_bit0
{R : Type u_1}
[NonAssocRing R]
[NoZeroDivisors R]
[CharZero R]
{a : R}
{b : R}
:
@[simp]
theorem
bit1_eq_bit1
{R : Type u_1}
[NonAssocRing R]
[NoZeroDivisors R]
[CharZero R]
{a : R}
{b : R}
:
@[simp]
@[simp]
@[simp]
@[simp]
instance
WithTop.instCharZeroWithTopAddMonoidWithOne
{R : Type u_1}
[AddMonoidWithOne R]
[CharZero R]
:
Equations
- ⋯ = ⋯
instance
WithBot.instCharZeroWithBotAddMonoidWithOne
{R : Type u_1}
[AddMonoidWithOne R]
[CharZero R]
:
Equations
- ⋯ = ⋯
theorem
RingHom.charZero
{R : Type u_1}
{S : Type u_2}
[NonAssocSemiring R]
[NonAssocSemiring S]
(ϕ : R →+* S)
[hS : CharZero S]
:
CharZero R
theorem
RingHom.charZero_iff
{R : Type u_1}
{S : Type u_2}
[NonAssocSemiring R]
[NonAssocSemiring S]
{ϕ : R →+* S}
(hϕ : Function.Injective ⇑ϕ)
: