Documentation

Mathlib.Order.WithBot

WithBot, WithTop #

Adding a bot or a top to an order.

Main declarations #

def WithBot (α : Type u_5) :
Type u_5

Attach to a type.

Equations
Instances For
instance WithBot.instReprWithBot {α : Type u_1} [Repr α] :
Equations
  • One or more equations did not get rendered due to their size.
@[match_pattern]
def WithBot.some {α : Type u_1} :
αWithBot α

The canonical map from α into WithBot α

Equations
  • WithBot.some = some
Instances For
instance WithBot.coe {α : Type u_1} :
Coe α (WithBot α)
Equations
  • WithBot.coe = { coe := WithBot.some }
instance WithBot.bot {α : Type u_1} :
Equations
  • WithBot.bot = { bot := none }
instance WithBot.inhabited {α : Type u_1} :
Equations
  • WithBot.inhabited = { default := }
instance WithBot.nontrivial {α : Type u_1} [Nonempty α] :
Equations
  • =
theorem WithBot.coe_injective {α : Type u_1} :
Function.Injective WithBot.some
@[simp]
theorem WithBot.coe_inj {α : Type u_1} {a : α} {b : α} :
a = b a = b
theorem WithBot.forall {α : Type u_1} {p : WithBot αProp} :
(∀ (x : WithBot α), p x) p ∀ (x : α), p x
theorem WithBot.exists {α : Type u_1} {p : WithBot αProp} :
(∃ (x : WithBot α), p x) p ∃ (x : α), p x
theorem WithBot.none_eq_bot {α : Type u_1} :
none =
theorem WithBot.some_eq_coe {α : Type u_1} (a : α) :
some a = a
@[simp]
theorem WithBot.bot_ne_coe {α : Type u_1} {a : α} :
a
@[simp]
theorem WithBot.coe_ne_bot {α : Type u_1} {a : α} :
a
def WithBot.recBotCoe {α : Type u_1} {C : WithBot αSort u_5} (bot : C ) (coe : (a : α) → C a) (n : WithBot α) :
C n

Recursor for WithBot using the preferred forms and ↑a.

Equations
@[simp]
theorem WithBot.recBotCoe_bot {α : Type u_1} {C : WithBot αSort u_5} (d : C ) (f : (a : α) → C a) :
@[simp]
theorem WithBot.recBotCoe_coe {α : Type u_1} {C : WithBot αSort u_5} (d : C ) (f : (a : α) → C a) (x : α) :
WithBot.recBotCoe d f x = f x
def WithBot.unbot' {α : Type u_1} (d : α) (x : WithBot α) :
α

Specialization of Option.getD to values in WithBot α that respects API boundaries.

Equations
@[simp]
theorem WithBot.unbot'_bot {α : Type u_5} (d : α) :
@[simp]
theorem WithBot.unbot'_coe {α : Type u_5} (d : α) (x : α) :
WithBot.unbot' d x = x
theorem WithBot.coe_eq_coe {α : Type u_1} {a : α} {b : α} :
a = b a = b
theorem WithBot.unbot'_eq_iff {α : Type u_1} {d : α} {y : α} {x : WithBot α} :
WithBot.unbot' d x = y x = y x = y = d
@[simp]
theorem WithBot.unbot'_eq_self_iff {α : Type u_1} {d : α} {x : WithBot α} :
WithBot.unbot' d x = d x = d x =
theorem WithBot.unbot'_eq_unbot'_iff {α : Type u_1} {d : α} {x : WithBot α} {y : WithBot α} :
WithBot.unbot' d x = WithBot.unbot' d y x = y x = d y = x = y = d
def WithBot.map {α : Type u_1} {β : Type u_2} (f : αβ) :
WithBot αWithBot β

Lift a map f : α → β to WithBot α → WithBot β. Implemented using Option.map.

Equations
@[simp]
theorem WithBot.map_bot {α : Type u_1} {β : Type u_2} (f : αβ) :
@[simp]
theorem WithBot.map_coe {α : Type u_1} {β : Type u_2} (f : αβ) (a : α) :
WithBot.map f a = (f a)
theorem WithBot.map_comm {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} {f₁ : αβ} {f₂ : αγ} {g₁ : βδ} {g₂ : γδ} (h : g₁ f₁ = g₂ f₂) (a : α) :
WithBot.map g₁ (WithBot.map f₁ a) = WithBot.map g₂ (WithBot.map f₂ a)
def WithBot.map₂ {α : Type u_1} {β : Type u_2} {γ : Type u_3} :
(αβγ)WithBot αWithBot βWithBot γ

The image of a binary function f : α → β → γ as a function WithBot α → WithBot β → WithBot γ.

Mathematically this should be thought of as the image of the corresponding function α × β → γ.

Equations
  • WithBot.map₂ = Option.map₂
theorem WithBot.map₂_coe_coe {α : Type u_1} {β : Type u_2} {γ : Type u_3} (f : αβγ) (a : α) (b : β) :
WithBot.map₂ f a b = (f a b)
@[simp]
theorem WithBot.map₂_bot_left {α : Type u_1} {β : Type u_2} {γ : Type u_3} (f : αβγ) (b : WithBot β) :
@[simp]
theorem WithBot.map₂_bot_right {α : Type u_1} {β : Type u_2} {γ : Type u_3} (f : αβγ) (a : WithBot α) :
@[simp]
theorem WithBot.map₂_coe_left {α : Type u_1} {β : Type u_2} {γ : Type u_3} (f : αβγ) (a : α) (b : WithBot β) :
WithBot.map₂ f (a) b = WithBot.map (fun (b : β) => f a b) b
@[simp]
theorem WithBot.map₂_coe_right {α : Type u_1} {β : Type u_2} {γ : Type u_3} (f : αβγ) (a : WithBot α) (b : β) :
WithBot.map₂ f a b = WithBot.map (fun (x : α) => f x b) a
@[simp]
theorem WithBot.map₂_eq_bot_iff {α : Type u_1} {β : Type u_2} {γ : Type u_3} {f : αβγ} {a : WithBot α} {b : WithBot β} :
theorem WithBot.ne_bot_iff_exists {α : Type u_1} {x : WithBot α} :
x ∃ (a : α), a = x
def WithBot.unbot {α : Type u_1} (x : WithBot α) :
x α

Deconstruct a x : WithBot α to the underlying value in α, given a proof that x ≠ ⊥.

Equations
@[simp]
theorem WithBot.coe_unbot {α : Type u_1} (x : WithBot α) (hx : x ) :
(WithBot.unbot x hx) = x
@[simp]
theorem WithBot.unbot_coe {α : Type u_1} (x : α) (h : optParam (x ) ) :
WithBot.unbot (x) h = x
instance WithBot.canLift {α : Type u_1} :
CanLift (WithBot α) α WithBot.some fun (r : WithBot α) => r
Equations
  • =
instance WithBot.le {α : Type u_1} [LE α] :
LE (WithBot α)
Equations
  • WithBot.le = { le := fun (o₁ o₂ : Option α) => ∀ (a : α), a o₁∃ (b : α), b o₂ a b }
@[simp]
theorem WithBot.some_le_some {α : Type u_1} {a : α} {b : α} [LE α] :
some a some b a b
@[simp]
theorem WithBot.coe_le_coe {α : Type u_1} {a : α} {b : α} [LE α] :
a b a b
@[simp]
theorem WithBot.none_le {α : Type u_1} [LE α] {a : WithBot α} :
none a
instance WithBot.orderBot {α : Type u_1} [LE α] :
Equations
  • WithBot.orderBot = let __src := WithBot.bot; OrderBot.mk
instance WithBot.orderTop {α : Type u_1} [LE α] [OrderTop α] :
Equations
instance WithBot.instBoundedOrder {α : Type u_1} [LE α] [OrderTop α] :
Equations
  • WithBot.instBoundedOrder = let __src := WithBot.orderBot; let __src_1 := WithBot.orderTop; BoundedOrder.mk
theorem WithBot.not_coe_le_bot {α : Type u_1} [LE α] (a : α) :
¬a
@[simp]
theorem WithBot.le_bot_iff {α : Type u_1} [LE α] {a : WithBot α} :

There is a general version le_bot_iff, but this lemma does not require a PartialOrder.

theorem WithBot.coe_le {α : Type u_1} {a : α} {b : α} [LE α] {o : Option α} :
b o(a o a b)
theorem WithBot.coe_le_iff {α : Type u_1} {a : α} [LE α] {x : WithBot α} :
a x ∃ (b : α), x = b a b
theorem WithBot.le_coe_iff {α : Type u_1} {b : α} [LE α] {x : WithBot α} :
x b ∀ (a : α), x = aa b
theorem IsMax.withBot {α : Type u_1} {a : α} [LE α] (h : IsMax a) :
IsMax a
theorem WithBot.le_unbot_iff {α : Type u_1} [LE α] {a : α} {b : WithBot α} (h : b ) :
a WithBot.unbot b h a b
theorem WithBot.unbot_le_iff {α : Type u_1} [LE α] {a : WithBot α} (h : a ) {b : α} :
WithBot.unbot a h b a b
theorem WithBot.unbot'_le_iff {α : Type u_1} [LE α] {a : WithBot α} {b : α} {c : α} (h : a = b c) :
WithBot.unbot' b a c a c
instance WithBot.lt {α : Type u_1} [LT α] :
LT (WithBot α)
Equations
  • WithBot.lt = { lt := fun (o₁ o₂ : Option α) => ∃ (b : α), b o₂ ∀ (a : α), a o₁a < b }
@[simp]
theorem WithBot.some_lt_some {α : Type u_1} {a : α} {b : α} [LT α] :
some a < some b a < b
@[simp]
theorem WithBot.coe_lt_coe {α : Type u_1} {a : α} {b : α} [LT α] :
a < b a < b
@[simp]
theorem WithBot.none_lt_some {α : Type u_1} [LT α] (a : α) :
none < a
@[simp]
theorem WithBot.bot_lt_coe {α : Type u_1} [LT α] (a : α) :
< a
@[simp]
theorem WithBot.not_lt_none {α : Type u_1} [LT α] (a : WithBot α) :
¬a < none
theorem WithBot.lt_iff_exists_coe {α : Type u_1} [LT α] {a : WithBot α} {b : WithBot α} :
a < b ∃ (p : α), b = p a < p
theorem WithBot.lt_coe_iff {α : Type u_1} {b : α} [LT α] {x : WithBot α} :
x < b ∀ (a : α), x = aa < b
theorem WithBot.bot_lt_iff_ne_bot {α : Type u_1} [LT α] {x : WithBot α} :

A version of bot_lt_iff_ne_bot for WithBot that only requires LT α, not PartialOrder α.

theorem WithBot.unbot'_lt_iff {α : Type u_1} [LT α] {a : WithBot α} {b : α} {c : α} (h : a = b < c) :
WithBot.unbot' b a < c a < c
instance WithBot.preorder {α : Type u_1} [Preorder α] :
Equations
Equations
theorem WithBot.coe_strictMono {α : Type u_1} [Preorder α] :
StrictMono fun (a : α) => a
theorem WithBot.coe_mono {α : Type u_1} [Preorder α] :
Monotone fun (a : α) => a
theorem WithBot.monotone_iff {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {f : WithBot αβ} :
Monotone f (Monotone fun (a : α) => f a) ∀ (x : α), f f x
@[simp]
theorem WithBot.monotone_map_iff {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {f : αβ} :
theorem Monotone.withBot_map {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {f : αβ} :

Alias of the reverse direction of WithBot.monotone_map_iff.

theorem WithBot.strictMono_iff {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {f : WithBot αβ} :
StrictMono f (StrictMono fun (a : α) => f a) ∀ (x : α), f < f x
theorem WithBot.strictAnti_iff {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {f : WithBot αβ} :
StrictAnti f (StrictAnti fun (a : α) => f a) ∀ (x : α), f x < f
@[simp]
theorem WithBot.strictMono_map_iff {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {f : αβ} :
theorem StrictMono.withBot_map {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {f : αβ} :

Alias of the reverse direction of WithBot.strictMono_map_iff.

theorem WithBot.map_le_iff {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] (f : αβ) (mono_iff : ∀ {a b : α}, f a f b a b) (a : WithBot α) (b : WithBot α) :
theorem WithBot.le_coe_unbot' {α : Type u_1} [Preorder α] (a : WithBot α) (b : α) :
a (WithBot.unbot' b a)
@[simp]
theorem WithBot.lt_coe_bot {α : Type u_1} [Preorder α] [OrderBot α] {x : WithBot α} :
x < x =
Equations
  • WithBot.semilatticeSup = let __src := WithBot.partialOrder; let __src_1 := WithBot.orderBot; SemilatticeSup.mk
theorem WithBot.coe_sup {α : Type u_1} [SemilatticeSup α] (a : α) (b : α) :
(a b) = a b
Equations
  • WithBot.semilatticeInf = let __src := WithBot.partialOrder; let __src_1 := WithBot.orderBot; SemilatticeInf.mk
theorem WithBot.coe_inf {α : Type u_1} [SemilatticeInf α] (a : α) (b : α) :
(a b) = a b
instance WithBot.lattice {α : Type u_1} [Lattice α] :
Equations
  • WithBot.lattice = let __src := WithBot.semilatticeSup; let __src_1 := WithBot.semilatticeInf; Lattice.mk
Equations
instance WithBot.decidableEq {α : Type u_1} [DecidableEq α] :
Equations
instance WithBot.decidableLE {α : Type u_1} [LE α] [DecidableRel fun (x x_1 : α) => x x_1] :
DecidableRel fun (x x_1 : WithBot α) => x x_1
Equations
instance WithBot.decidableLT {α : Type u_1} [LT α] [DecidableRel fun (x x_1 : α) => x < x_1] :
DecidableRel fun (x x_1 : WithBot α) => x < x_1
Equations
instance WithBot.isTotal_le {α : Type u_1} [LE α] [IsTotal α fun (x x_1 : α) => x x_1] :
IsTotal (WithBot α) fun (x x_1 : WithBot α) => x x_1
Equations
  • =
instance WithBot.linearOrder {α : Type u_1} [LinearOrder α] :
Equations
@[simp]
theorem WithBot.coe_min {α : Type u_1} [LinearOrder α] (x : α) (y : α) :
(min x y) = min x y
@[simp]
theorem WithBot.coe_max {α : Type u_1} [LinearOrder α] (x : α) (y : α) :
(max x y) = max x y
Equations
  • =
Equations
  • =
Equations
  • =
theorem WithBot.lt_iff_exists_coe_btwn {α : Type u_1} [Preorder α] [DenselyOrdered α] [NoMinOrder α] {a : WithBot α} {b : WithBot α} :
a < b ∃ (x : α), a < x x < b
instance WithBot.noTopOrder {α : Type u_1} [LE α] [NoTopOrder α] [Nonempty α] :
Equations
  • =
instance WithBot.noMaxOrder {α : Type u_1} [LT α] [NoMaxOrder α] [Nonempty α] :
Equations
  • =
def WithTop (α : Type u_5) :
Type u_5

Attach to a type.

Equations
Instances For
instance WithTop.instReprWithTop {α : Type u_1} [Repr α] :
Equations
  • One or more equations did not get rendered due to their size.
@[match_pattern]
def WithTop.some {α : Type u_1} :
αWithTop α

The canonical map from α into WithTop α

Equations
  • WithTop.some = some
Instances For
instance WithTop.coeTC {α : Type u_1} :
CoeTC α (WithTop α)
Equations
  • WithTop.coeTC = { coe := WithTop.some }
instance WithTop.top {α : Type u_1} :
Equations
  • WithTop.top = { top := none }
instance WithTop.inhabited {α : Type u_1} :
Equations
  • WithTop.inhabited = { default := }
instance WithTop.nontrivial {α : Type u_1} [Nonempty α] :
Equations
  • =
theorem WithTop.coe_injective {α : Type u_1} :
Function.Injective WithTop.some
theorem WithTop.coe_inj {α : Type u_1} {a : α} {b : α} :
a = b a = b
theorem WithTop.forall {α : Type u_1} {p : WithTop αProp} :
(∀ (x : WithTop α), p x) p ∀ (x : α), p x
theorem WithTop.exists {α : Type u_1} {p : WithTop αProp} :
(∃ (x : WithTop α), p x) p ∃ (x : α), p x
theorem WithTop.none_eq_top {α : Type u_1} :
none =
theorem WithTop.some_eq_coe {α : Type u_1} (a : α) :
some a = a
@[simp]
theorem WithTop.top_ne_coe {α : Type u_1} {a : α} :
a
@[simp]
theorem WithTop.coe_ne_top {α : Type u_1} {a : α} :
a
def WithTop.recTopCoe {α : Type u_1} {C : WithTop αSort u_5} (top : C ) (coe : (a : α) → C a) (n : WithTop α) :
C n

Recursor for WithTop using the preferred forms and ↑a.

Equations
@[simp]
theorem WithTop.recTopCoe_top {α : Type u_1} {C : WithTop αSort u_5} (d : C ) (f : (a : α) → C a) :
@[simp]
theorem WithTop.recTopCoe_coe {α : Type u_1} {C : WithTop αSort u_5} (d : C ) (f : (a : α) → C a) (x : α) :
WithTop.recTopCoe d f x = f x

WithTop.toDual is the equivalence sending to and any a : α to toDual a : αᵒᵈ. See WithTop.toDualBotEquiv for the related order-iso.

Equations

WithTop.ofDual is the equivalence sending to and any a : αᵒᵈ to ofDual a : α. See WithTop.toDualBotEquiv for the related order-iso.

Equations

WithBot.toDual is the equivalence sending to and any a : α to toDual a : αᵒᵈ. See WithBot.toDual_top_equiv for the related order-iso.

Equations

WithBot.ofDual is the equivalence sending to and any a : αᵒᵈ to ofDual a : α. See WithBot.ofDual_top_equiv for the related order-iso.

Equations
@[simp]
theorem WithTop.toDual_symm_apply {α : Type u_1} (a : WithBot αᵒᵈ) :
WithTop.toDual.symm a = WithBot.ofDual a
@[simp]
theorem WithTop.ofDual_symm_apply {α : Type u_1} (a : WithBot α) :
WithTop.ofDual.symm a = WithBot.toDual a
@[simp]
theorem WithTop.toDual_apply_top {α : Type u_1} :
WithTop.toDual =
@[simp]
theorem WithTop.ofDual_apply_top {α : Type u_1} :
WithTop.ofDual =
@[simp]
theorem WithTop.toDual_apply_coe {α : Type u_1} (a : α) :
WithTop.toDual a = (OrderDual.toDual a)
@[simp]
theorem WithTop.ofDual_apply_coe {α : Type u_1} (a : αᵒᵈ) :
WithTop.ofDual a = (OrderDual.ofDual a)
def WithTop.untop' {α : Type u_1} (d : α) (x : WithTop α) :
α

Specialization of Option.getD to values in WithTop α that respects API boundaries.

Equations
@[simp]
theorem WithTop.untop'_top {α : Type u_5} (d : α) :
@[simp]
theorem WithTop.untop'_coe {α : Type u_5} (d : α) (x : α) :
WithTop.untop' d x = x
@[simp]
theorem WithTop.coe_eq_coe {α : Type u_1} {a : α} {b : α} :
a = b a = b
theorem WithTop.untop'_eq_iff {α : Type u_1} {d : α} {y : α} {x : WithTop α} :
WithTop.untop' d x = y x = y x = y = d
@[simp]
theorem WithTop.untop'_eq_self_iff {α : Type u_1} {d : α} {x : WithTop α} :
WithTop.untop' d x = d x = d x =
theorem WithTop.untop'_eq_untop'_iff {α : Type u_1} {d : α} {x : WithTop α} {y : WithTop α} :
WithTop.untop' d x = WithTop.untop' d y x = y x = d y = x = y = d
def WithTop.map {α : Type u_1} {β : Type u_2} (f : αβ) :
WithTop αWithTop β

Lift a map f : α → β to WithTop α → WithTop β. Implemented using Option.map.

Equations
@[simp]
theorem WithTop.map_top {α : Type u_1} {β : Type u_2} (f : αβ) :
@[simp]
theorem WithTop.map_coe {α : Type u_1} {β : Type u_2} (f : αβ) (a : α) :
WithTop.map f a = (f a)
theorem WithTop.map_comm {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} {f₁ : αβ} {f₂ : αγ} {g₁ : βδ} {g₂ : γδ} (h : g₁ f₁ = g₂ f₂) (a : α) :
WithTop.map g₁ (WithTop.map f₁ a) = WithTop.map g₂ (WithTop.map f₂ a)
def WithTop.map₂ {α : Type u_1} {β : Type u_2} {γ : Type u_3} :
(αβγ)WithTop αWithTop βWithTop γ

The image of a binary function f : α → β → γ as a function WithTop α → WithTop β → WithTop γ.

Mathematically this should be thought of as the image of the corresponding function α × β → γ.

Equations
  • WithTop.map₂ = Option.map₂
theorem WithTop.map₂_coe_coe {α : Type u_1} {β : Type u_2} {γ : Type u_3} (f : αβγ) (a : α) (b : β) :
WithTop.map₂ f a b = (f a b)
@[simp]
theorem WithTop.map₂_top_left {α : Type u_1} {β : Type u_2} {γ : Type u_3} (f : αβγ) (b : WithTop β) :
@[simp]
theorem WithTop.map₂_top_right {α : Type u_1} {β : Type u_2} {γ : Type u_3} (f : αβγ) (a : WithTop α) :
@[simp]
theorem WithTop.map₂_coe_left {α : Type u_1} {β : Type u_2} {γ : Type u_3} (f : αβγ) (a : α) (b : WithTop β) :
WithTop.map₂ f (a) b = WithTop.map (fun (b : β) => f a b) b
@[simp]
theorem WithTop.map₂_coe_right {α : Type u_1} {β : Type u_2} {γ : Type u_3} (f : αβγ) (a : WithTop α) (b : β) :
WithTop.map₂ f a b = WithTop.map (fun (x : α) => f x b) a
@[simp]
theorem WithTop.map₂_eq_top_iff {α : Type u_1} {β : Type u_2} {γ : Type u_3} {f : αβγ} {a : WithTop α} {b : WithTop β} :
theorem WithTop.map_toDual {α : Type u_1} {β : Type u_2} (f : αᵒᵈβᵒᵈ) (a : WithBot α) :
WithTop.map f (WithBot.toDual a) = WithBot.map (OrderDual.toDual f) a
theorem WithTop.map_ofDual {α : Type u_1} {β : Type u_2} (f : αβ) (a : WithBot αᵒᵈ) :
WithTop.map f (WithBot.ofDual a) = WithBot.map (OrderDual.ofDual f) a
theorem WithTop.toDual_map {α : Type u_1} {β : Type u_2} (f : αβ) (a : WithTop α) :
WithTop.toDual (WithTop.map f a) = WithBot.map (OrderDual.toDual f OrderDual.ofDual) (WithTop.toDual a)
theorem WithTop.ofDual_map {α : Type u_1} {β : Type u_2} (f : αᵒᵈβᵒᵈ) (a : WithTop αᵒᵈ) :
WithTop.ofDual (WithTop.map f a) = WithBot.map (OrderDual.ofDual f OrderDual.toDual) (WithTop.ofDual a)
theorem WithTop.ne_top_iff_exists {α : Type u_1} {x : WithTop α} :
x ∃ (a : α), a = x
def WithTop.untop {α : Type u_1} (x : WithTop α) :
x α

Deconstruct a x : WithTop α to the underlying value in α, given a proof that x ≠ ⊤.

Equations
@[simp]
theorem WithTop.coe_untop {α : Type u_1} (x : WithTop α) (hx : x ) :
(WithTop.untop x hx) = x
@[simp]
theorem WithTop.untop_coe {α : Type u_1} (x : α) (h : optParam (x ) ) :
WithTop.untop (x) h = x
instance WithTop.canLift {α : Type u_1} :
CanLift (WithTop α) α WithTop.some fun (r : WithTop α) => r
Equations
  • =
instance WithTop.le {α : Type u_1} [LE α] :
LE (WithTop α)
Equations
  • WithTop.le = { le := fun (o₁ o₂ : Option α) => ∀ (a : α), a o₂∃ (b : α), b o₁ b a }
theorem WithTop.toDual_le_iff {α : Type u_1} [LE α] {a : WithTop α} {b : WithBot αᵒᵈ} :
WithTop.toDual a b WithBot.ofDual b a
theorem WithTop.le_toDual_iff {α : Type u_1} [LE α] {a : WithBot αᵒᵈ} {b : WithTop α} :
a WithTop.toDual b b WithBot.ofDual a
@[simp]
theorem WithTop.toDual_le_toDual_iff {α : Type u_1} [LE α] {a : WithTop α} {b : WithTop α} :
WithTop.toDual a WithTop.toDual b b a
theorem WithTop.ofDual_le_iff {α : Type u_1} [LE α] {a : WithTop αᵒᵈ} {b : WithBot α} :
WithTop.ofDual a b WithBot.toDual b a
theorem WithTop.le_ofDual_iff {α : Type u_1} [LE α] {a : WithBot α} {b : WithTop αᵒᵈ} :
a WithTop.ofDual b b WithBot.toDual a
@[simp]
theorem WithTop.ofDual_le_ofDual_iff {α : Type u_1} [LE α] {a : WithTop αᵒᵈ} {b : WithTop αᵒᵈ} :
WithTop.ofDual a WithTop.ofDual b b a
@[simp]
theorem WithTop.coe_le_coe {α : Type u_1} {a : α} {b : α} [LE α] :
a b a b
@[simp]
theorem WithTop.some_le_some {α : Type u_1} {a : α} {b : α} [LE α] :
some a some b a b
@[simp]
theorem WithTop.le_none {α : Type u_1} [LE α] {a : WithTop α} :
a none
instance WithTop.orderTop {α : Type u_1} [LE α] :
Equations
  • WithTop.orderTop = let __src := WithTop.top; OrderTop.mk
instance WithTop.orderBot {α : Type u_1} [LE α] [OrderBot α] :
Equations
instance WithTop.boundedOrder {α : Type u_1} [LE α] [OrderBot α] :
Equations
  • WithTop.boundedOrder = let __src := WithTop.orderTop; let __src_1 := WithTop.orderBot; BoundedOrder.mk
theorem WithTop.not_top_le_coe {α : Type u_1} [LE α] (a : α) :
¬ a
@[simp]
theorem WithTop.top_le_iff {α : Type u_1} [LE α] {a : WithTop α} :

There is a general version top_le_iff, but this lemma does not require a PartialOrder.

theorem WithTop.le_coe {α : Type u_1} {a : α} {b : α} [LE α] {o : Option α} :
a o(o b a b)
theorem WithTop.le_coe_iff {α : Type u_1} {b : α} [LE α] {x : WithTop α} :
x b ∃ (a : α), x = a a b
theorem WithTop.coe_le_iff {α : Type u_1} {a : α} [LE α] {x : WithTop α} :
a x ∀ (b : α), x = ba b
theorem IsMin.withTop {α : Type u_1} {a : α} [LE α] (h : IsMin a) :
IsMin a
theorem WithTop.untop_le_iff {α : Type u_1} [LE α] {a : WithTop α} {b : α} (h : a ) :
WithTop.untop a h b a b
theorem WithTop.le_untop_iff {α : Type u_1} [LE α] {a : α} {b : WithTop α} (h : b ) :
a WithTop.untop b h a b
theorem WithTop.le_untop'_iff {α : Type u_1} [LE α] {a : WithTop α} {b : α} {c : α} (h : a = c b) :
c WithTop.untop' b a c a
instance WithTop.lt {α : Type u_1} [LT α] :
LT (WithTop α)
Equations
  • WithTop.lt = { lt := fun (o₁ o₂ : Option α) => ∃ (b : α), b o₁ ∀ (a : α), a o₂b < a }
theorem WithTop.toDual_lt_iff {α : Type u_1} [LT α] {a : WithTop α} {b : WithBot αᵒᵈ} :
WithTop.toDual a < b WithBot.ofDual b < a
theorem WithTop.lt_toDual_iff {α : Type u_1} [LT α] {a : WithBot αᵒᵈ} {b : WithTop α} :
a < WithTop.toDual b b < WithBot.ofDual a
@[simp]
theorem WithTop.toDual_lt_toDual_iff {α : Type u_1} [LT α] {a : WithTop α} {b : WithTop α} :
WithTop.toDual a < WithTop.toDual b b < a
theorem WithTop.ofDual_lt_iff {α : Type u_1} [LT α] {a : WithTop αᵒᵈ} {b : WithBot α} :
WithTop.ofDual a < b WithBot.toDual b < a
theorem WithTop.lt_ofDual_iff {α : Type u_1} [LT α] {a : WithBot α} {b : WithTop αᵒᵈ} :
a < WithTop.ofDual b b < WithBot.toDual a
@[simp]
theorem WithTop.ofDual_lt_ofDual_iff {α : Type u_1} [LT α] {a : WithTop αᵒᵈ} {b : WithTop αᵒᵈ} :
WithTop.ofDual a < WithTop.ofDual b b < a
theorem WithTop.lt_untop'_iff {α : Type u_1} [LT α] {a : WithTop α} {b : α} {c : α} (h : a = c < b) :
c < WithTop.untop' b a c < a
@[simp]
theorem WithBot.toDual_symm_apply {α : Type u_1} (a : WithTop αᵒᵈ) :
WithBot.toDual.symm a = WithTop.ofDual a
@[simp]
theorem WithBot.ofDual_symm_apply {α : Type u_1} (a : WithTop α) :
WithBot.ofDual.symm a = WithTop.toDual a
@[simp]
theorem WithBot.toDual_apply_bot {α : Type u_1} :
WithBot.toDual =
@[simp]
theorem WithBot.ofDual_apply_bot {α : Type u_1} :
WithBot.ofDual =
@[simp]
theorem WithBot.toDual_apply_coe {α : Type u_1} (a : α) :
WithBot.toDual a = (OrderDual.toDual a)
@[simp]
theorem WithBot.ofDual_apply_coe {α : Type u_1} (a : αᵒᵈ) :
WithBot.ofDual a = (OrderDual.ofDual a)
theorem WithBot.map_toDual {α : Type u_1} {β : Type u_2} (f : αᵒᵈβᵒᵈ) (a : WithTop α) :
WithBot.map f (WithTop.toDual a) = WithTop.map (OrderDual.toDual f) a
theorem WithBot.map_ofDual {α : Type u_1} {β : Type u_2} (f : αβ) (a : WithTop αᵒᵈ) :
WithBot.map f (WithTop.ofDual a) = WithTop.map (OrderDual.ofDual f) a
theorem WithBot.toDual_map {α : Type u_1} {β : Type u_2} (f : αβ) (a : WithBot α) :
WithBot.toDual (WithBot.map f a) = WithBot.map (OrderDual.toDual f OrderDual.ofDual) (WithBot.toDual a)
theorem WithBot.ofDual_map {α : Type u_1} {β : Type u_2} (f : αᵒᵈβᵒᵈ) (a : WithBot αᵒᵈ) :
WithBot.ofDual (WithBot.map f a) = WithBot.map (OrderDual.ofDual f OrderDual.toDual) (WithBot.ofDual a)
theorem WithBot.toDual_le_iff {α : Type u_1} [LE α] {a : WithBot α} {b : WithTop αᵒᵈ} :
WithBot.toDual a b WithTop.ofDual b a
theorem WithBot.le_toDual_iff {α : Type u_1} [LE α] {a : WithTop αᵒᵈ} {b : WithBot α} :
a WithBot.toDual b b WithTop.ofDual a
@[simp]
theorem WithBot.toDual_le_toDual_iff {α : Type u_1} [LE α] {a : WithBot α} {b : WithBot α} :
WithBot.toDual a WithBot.toDual b b a
theorem WithBot.ofDual_le_iff {α : Type u_1} [LE α] {a : WithBot αᵒᵈ} {b : WithTop α} :
WithBot.ofDual a b WithTop.toDual b a
theorem WithBot.le_ofDual_iff {α : Type u_1} [LE α] {a : WithTop α} {b : WithBot αᵒᵈ} :
a WithBot.ofDual b b WithTop.toDual a
@[simp]
theorem WithBot.ofDual_le_ofDual_iff {α : Type u_1} [LE α] {a : WithBot αᵒᵈ} {b : WithBot αᵒᵈ} :
WithBot.ofDual a WithBot.ofDual b b a
theorem WithBot.toDual_lt_iff {α : Type u_1} [LT α] {a : WithBot α} {b : WithTop αᵒᵈ} :
WithBot.toDual a < b WithTop.ofDual b < a
theorem WithBot.lt_toDual_iff {α : Type u_1} [LT α] {a : WithTop αᵒᵈ} {b : WithBot α} :
a < WithBot.toDual b b < WithTop.ofDual a
@[simp]
theorem WithBot.toDual_lt_toDual_iff {α : Type u_1} [LT α] {a : WithBot α} {b : WithBot α} :
WithBot.toDual a < WithBot.toDual b b < a
theorem WithBot.ofDual_lt_iff {α : Type u_1} [LT α] {a : WithBot αᵒᵈ} {b : WithTop α} :
WithBot.ofDual a < b WithTop.toDual b < a
theorem WithBot.lt_ofDual_iff {α : Type u_1} [LT α] {a : WithTop α} {b : WithBot αᵒᵈ} :
a < WithBot.ofDual b b < WithTop.toDual a
@[simp]
theorem WithBot.ofDual_lt_ofDual_iff {α : Type u_1} [LT α] {a : WithBot αᵒᵈ} {b : WithBot αᵒᵈ} :
WithBot.ofDual a < WithBot.ofDual b b < a
@[simp]
theorem WithTop.coe_lt_coe {α : Type u_1} [LT α] {a : α} {b : α} :
a < b a < b
@[simp]
theorem WithTop.some_lt_some {α : Type u_1} [LT α] {a : α} {b : α} :
some a < some b a < b
@[simp]
theorem WithTop.coe_lt_top {α : Type u_1} [LT α] (a : α) :
a <
@[simp]
theorem WithTop.some_lt_none {α : Type u_1} [LT α] (a : α) :
some a < none
@[simp]
theorem WithTop.not_none_lt {α : Type u_1} [LT α] (a : WithTop α) :
¬none < a
theorem WithTop.lt_iff_exists_coe {α : Type u_1} [LT α] {a : WithTop α} {b : WithTop α} :
a < b ∃ (p : α), a = p p < b
theorem WithTop.coe_lt_iff {α : Type u_1} [LT α] {a : α} {x : WithTop α} :
a < x ∀ (b : α), x = ba < b
theorem WithTop.lt_top_iff_ne_top {α : Type u_1} [LT α] {x : WithTop α} :

A version of lt_top_iff_ne_top for WithTop that only requires LT α, not PartialOrder α.

instance WithTop.preorder {α : Type u_1} [Preorder α] :
Equations
Equations
theorem WithTop.coe_strictMono {α : Type u_1} [Preorder α] :
StrictMono fun (a : α) => a
theorem WithTop.coe_mono {α : Type u_1} [Preorder α] :
Monotone fun (a : α) => a
theorem WithTop.monotone_iff {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {f : WithTop αβ} :
Monotone f (Monotone fun (a : α) => f a) ∀ (x : α), f x f
@[simp]
theorem WithTop.monotone_map_iff {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {f : αβ} :
theorem Monotone.withTop_map {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {f : αβ} :

Alias of the reverse direction of WithTop.monotone_map_iff.

theorem WithTop.strictMono_iff {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {f : WithTop αβ} :
StrictMono f (StrictMono fun (a : α) => f a) ∀ (x : α), f x < f
theorem WithTop.strictAnti_iff {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {f : WithTop αβ} :
StrictAnti f (StrictAnti fun (a : α) => f a) ∀ (x : α), f < f x
@[simp]
theorem WithTop.strictMono_map_iff {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {f : αβ} :
theorem StrictMono.withTop_map {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {f : αβ} :

Alias of the reverse direction of WithTop.strictMono_map_iff.

theorem WithTop.map_le_iff {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] (f : αβ) (a : WithTop α) (b : WithTop α) (mono_iff : ∀ {a b : α}, f a f b a b) :
theorem WithTop.coe_untop'_le {α : Type u_1} [Preorder α] (a : WithTop α) (b : α) :
(WithTop.untop' b a) a
@[simp]
theorem WithTop.coe_top_lt {α : Type u_1} [Preorder α] [OrderTop α] {x : WithTop α} :
< x x =
Equations
theorem WithTop.coe_inf {α : Type u_1} [SemilatticeInf α] (a : α) (b : α) :
(a b) = a b
Equations
theorem WithTop.coe_sup {α : Type u_1} [SemilatticeSup α] (a : α) (b : α) :
(a b) = a b
instance WithTop.lattice {α : Type u_1} [Lattice α] :
Equations
  • WithTop.lattice = let __src := WithTop.semilatticeSup; let __src_1 := WithTop.semilatticeInf; Lattice.mk
Equations
instance WithTop.decidableEq {α : Type u_1} [DecidableEq α] :
Equations
instance WithTop.decidableLE {α : Type u_1} [LE α] [DecidableRel fun (x x_1 : α) => x x_1] :
DecidableRel fun (x x_1 : WithTop α) => x x_1
Equations
instance WithTop.decidableLT {α : Type u_1} [LT α] [DecidableRel fun (x x_1 : α) => x < x_1] :
DecidableRel fun (x x_1 : WithTop α) => x < x_1
Equations
instance WithTop.isTotal_le {α : Type u_1} [LE α] [IsTotal α fun (x x_1 : α) => x x_1] :
IsTotal (WithTop α) fun (x x_1 : WithTop α) => x x_1
Equations
  • =
instance WithTop.linearOrder {α : Type u_1} [LinearOrder α] :
Equations
@[simp]
theorem WithTop.coe_min {α : Type u_1} [LinearOrder α] (x : α) (y : α) :
(min x y) = min x y
@[simp]
theorem WithTop.coe_max {α : Type u_1} [LinearOrder α] (x : α) (y : α) :
(max x y) = max x y
Equations
  • =
Equations
  • =
instance WithTop.trichotomous.lt {α : Type u_1} [Preorder α] [IsTrichotomous α fun (x x_1 : α) => x < x_1] :
IsTrichotomous (WithTop α) fun (x x_1 : WithTop α) => x < x_1
Equations
  • =
instance WithTop.IsWellOrder.lt {α : Type u_1} [Preorder α] [IsWellOrder α fun (x x_1 : α) => x < x_1] :
IsWellOrder (WithTop α) fun (x x_1 : WithTop α) => x < x_1
Equations
  • =
instance WithTop.trichotomous.gt {α : Type u_1} [Preorder α] [IsTrichotomous α fun (x x_1 : α) => x > x_1] :
IsTrichotomous (WithTop α) fun (x x_1 : WithTop α) => x > x_1
Equations
  • =
instance WithTop.IsWellOrder.gt {α : Type u_1} [Preorder α] [IsWellOrder α fun (x x_1 : α) => x > x_1] :
IsWellOrder (WithTop α) fun (x x_1 : WithTop α) => x > x_1
Equations
  • =
instance WithBot.trichotomous.lt {α : Type u_1} [Preorder α] [h : IsTrichotomous α fun (x x_1 : α) => x < x_1] :
IsTrichotomous (WithBot α) fun (x x_1 : WithBot α) => x < x_1
Equations
  • =
instance WithBot.isWellOrder.lt {α : Type u_1} [Preorder α] [IsWellOrder α fun (x x_1 : α) => x < x_1] :
IsWellOrder (WithBot α) fun (x x_1 : WithBot α) => x < x_1
Equations
  • =
instance WithBot.trichotomous.gt {α : Type u_1} [Preorder α] [h : IsTrichotomous α fun (x x_1 : α) => x > x_1] :
IsTrichotomous (WithBot α) fun (x x_1 : WithBot α) => x > x_1
Equations
  • =
instance WithBot.isWellOrder.gt {α : Type u_1} [Preorder α] [h : IsWellOrder α fun (x x_1 : α) => x > x_1] :
IsWellOrder (WithBot α) fun (x x_1 : WithBot α) => x > x_1
Equations
  • =
Equations
  • =
theorem WithTop.lt_iff_exists_coe_btwn {α : Type u_1} [Preorder α] [DenselyOrdered α] [NoMaxOrder α] {a : WithTop α} {b : WithTop α} :
a < b ∃ (x : α), a < x x < b
instance WithTop.noBotOrder {α : Type u_1} [LE α] [NoBotOrder α] [Nonempty α] :
Equations
  • =
instance WithTop.noMinOrder {α : Type u_1} [LT α] [NoMinOrder α] [Nonempty α] :
Equations
  • =