Canonically ordered semifields #
A canonically linear ordered field is a linear ordered field in which a ≤ b
iff there exists
c
with b = a + c
.
- add : α → α → α
- zero : α
- nsmul : ℕ → α → α
- nsmul_zero : ∀ (x : α), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : α), AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
- bot : α
- mul : α → α → α
- one : α
- natCast : ℕ → α
- natCast_zero : NatCast.natCast 0 = 0
- natCast_succ : ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1
- npow : ℕ → α → α
- npow_zero : ∀ (x : α), CanonicallyOrderedCommSemiring.npow 0 x = 1
- npow_succ : ∀ (n : ℕ) (x : α), CanonicallyOrderedCommSemiring.npow (n + 1) x = x * CanonicallyOrderedCommSemiring.npow n x
- exists_pair_ne : ∃ (x : α), ∃ (y : α), x ≠ y
- zero_le_one : 0 ≤ 1
In a strict ordered semiring,
0 ≤ 1
. Left multiplication by a positive element is strictly monotone.
Right multiplication by a positive element is strictly monotone.
- min : α → α → α
- max : α → α → α
- compare : α → α → Ordering
A linear order is total.
- decidableLE : DecidableRel fun (x x_1 : α) => x ≤ x_1
In a linearly ordered type, we assume the order relations are all decidable.
- decidableEq : DecidableEq α
In a linearly ordered type, we assume the order relations are all decidable.
- decidableLT : DecidableRel fun (x x_1 : α) => x < x_1
In a linearly ordered type, we assume the order relations are all decidable.
The minimum function is equivalent to the one you get from
minOfLe
.The minimum function is equivalent to the one you get from
maxOfLe
.- compare_eq_compareOfLessAndEq : ∀ (a b : α), compare a b = compareOfLessAndEq a b
Comparison via
compare
is equal to the canonical comparison given decidable<
and=
. - inv : α → α
- div : α → α → α
a / b := a * b⁻¹
- zpow : ℤ → α → α
The power operation:
a ^ n = a * ··· * a
;a ^ (-n) = a⁻¹ * ··· a⁻¹
(n
times) - zpow_zero' : ∀ (a : α), CanonicallyLinearOrderedSemifield.zpow 0 a = 1
a ^ 0 = 1
- zpow_succ' : ∀ (n : ℕ) (a : α), CanonicallyLinearOrderedSemifield.zpow (Int.ofNat (Nat.succ n)) a = a * CanonicallyLinearOrderedSemifield.zpow (Int.ofNat n) a
a ^ (n + 1) = a * a ^ n
- zpow_neg' : ∀ (n : ℕ) (a : α), CanonicallyLinearOrderedSemifield.zpow (Int.negSucc n) a = (CanonicallyLinearOrderedSemifield.zpow (↑(Nat.succ n)) a)⁻¹
a ^ -(n + 1) = (a ^ (n + 1))⁻¹
The inverse of
0
in a group with zero is0
.Every nonzero element of a group with zero is invertible.
Instances
Equations
- CanonicallyLinearOrderedSemifield.toLinearOrderedCommGroupWithZero = let __src := inst; LinearOrderedCommGroupWithZero.mk ⋯ CanonicallyLinearOrderedSemifield.zpow ⋯ ⋯ ⋯ ⋯ ⋯
Equations
- One or more equations did not get rendered due to their size.