Asymptotic equivalence up to a constant #
In this file we define Asymptotics.IsTheta l f g
(notation: f =Θ[l] g
) as
f =O[l] g ∧ g =O[l] f
, then prove basic properties of this equivalence relation.
We say that f
is Θ(g)
along a filter l
(notation: f =Θ[l] g
) if f =O[l] g
and
g =O[l] f
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- Asymptotics.instTransForAllForAllForAllIsThetaToNormIsThetaIsTheta = { trans := ⋯ }
Equations
- Asymptotics.instTransForAllForAllForAllIsBigOToNormIsThetaIsBigO = { trans := ⋯ }
Equations
- Asymptotics.instTransForAllForAllForAllIsThetaToNormIsBigOIsBigO = { trans := ⋯ }
Equations
- Asymptotics.instTransForAllForAllForAllIsLittleOToNormIsThetaToNormIsLittleO = { trans := ⋯ }
Equations
- Asymptotics.instTransForAllForAllForAllIsThetaToNormIsLittleOIsLittleO = { trans := ⋯ }
Alias of the reverse direction of Asymptotics.isTheta_norm_left
.
Alias of the forward direction of Asymptotics.isTheta_norm_left
.
Alias of the forward direction of Asymptotics.isTheta_norm_right
.
Alias of the reverse direction of Asymptotics.isTheta_norm_right
.
Alias of the reverse direction of Asymptotics.isTheta_const_smul_left
.
Alias of the forward direction of Asymptotics.isTheta_const_smul_left
.
Alias of the forward direction of Asymptotics.isTheta_const_smul_right
.
Alias of the reverse direction of Asymptotics.isTheta_const_smul_right
.
Alias of the forward direction of Asymptotics.isTheta_const_mul_left
.
Alias of the reverse direction of Asymptotics.isTheta_const_mul_left
.
Alias of the forward direction of Asymptotics.isTheta_const_mul_right
.
Alias of the reverse direction of Asymptotics.isTheta_const_mul_right
.