Normed fields #
In this file we define (semi)normed rings and fields. We also prove some theorems about these definitions.
A non-unital seminormed ring is a not-necessarily-unital ring
endowed with a seminorm which satisfies the inequality ‖x y‖ ≤ ‖x‖ ‖y‖
.
- norm : α → ℝ
- add : α → α → α
- zero : α
- nsmul : ℕ → α → α
- nsmul_zero : ∀ (x : α), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : α), AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
- neg : α → α
- sub : α → α → α
- zsmul : ℤ → α → α
- zsmul_zero' : ∀ (a : α), SubNegMonoid.zsmul 0 a = 0
- zsmul_succ' : ∀ (n : ℕ) (a : α), SubNegMonoid.zsmul (Int.ofNat (Nat.succ n)) a = a + SubNegMonoid.zsmul (Int.ofNat n) a
- zsmul_neg' : ∀ (n : ℕ) (a : α), SubNegMonoid.zsmul (Int.negSucc n) a = -SubNegMonoid.zsmul (↑(Nat.succ n)) a
- mul : α → α → α
- dist : α → α → ℝ
- edist : α → α → ENNReal
- edist_dist : ∀ (x y : α), PseudoMetricSpace.edist x y = ENNReal.ofReal (dist x y)
- toUniformSpace : UniformSpace α
- uniformity_dist : uniformity α = ⨅ (ε : ℝ), ⨅ (_ : ε > 0), Filter.principal {p : α × α | dist p.1 p.2 < ε}
- toBornology : Bornology α
The distance is induced by the norm.
The norm is submultiplicative.
Instances
A seminormed ring is a ring endowed with a seminorm which satisfies the inequality
‖x y‖ ≤ ‖x‖ ‖y‖
.
- norm : α → ℝ
- add : α → α → α
- zero : α
- nsmul : ℕ → α → α
- nsmul_zero : ∀ (x : α), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : α), AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
- mul : α → α → α
- one : α
- natCast : ℕ → α
- natCast_zero : NatCast.natCast 0 = 0
- natCast_succ : ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1
- npow : ℕ → α → α
- npow_zero : ∀ (x : α), Semiring.npow 0 x = 1
- npow_succ : ∀ (n : ℕ) (x : α), Semiring.npow (n + 1) x = x * Semiring.npow n x
- neg : α → α
- sub : α → α → α
- zsmul : ℤ → α → α
- zsmul_zero' : ∀ (a : α), Ring.zsmul 0 a = 0
- zsmul_succ' : ∀ (n : ℕ) (a : α), Ring.zsmul (Int.ofNat (Nat.succ n)) a = a + Ring.zsmul (Int.ofNat n) a
- zsmul_neg' : ∀ (n : ℕ) (a : α), Ring.zsmul (Int.negSucc n) a = -Ring.zsmul (↑(Nat.succ n)) a
- intCast : ℤ → α
- intCast_ofNat : ∀ (n : ℕ), IntCast.intCast ↑n = ↑n
- intCast_negSucc : ∀ (n : ℕ), IntCast.intCast (Int.negSucc n) = -↑(n + 1)
- dist : α → α → ℝ
- edist : α → α → ENNReal
- edist_dist : ∀ (x y : α), PseudoMetricSpace.edist x y = ENNReal.ofReal (dist x y)
- toUniformSpace : UniformSpace α
- uniformity_dist : uniformity α = ⨅ (ε : ℝ), ⨅ (_ : ε > 0), Filter.principal {p : α × α | dist p.1 p.2 < ε}
- toBornology : Bornology α
The distance is induced by the norm.
The norm is submultiplicative.
Instances
A seminormed ring is a non-unital seminormed ring.
Equations
- SeminormedRing.toNonUnitalSeminormedRing = NonUnitalSeminormedRing.mk ⋯ ⋯
A non-unital normed ring is a not-necessarily-unital ring
endowed with a norm which satisfies the inequality ‖x y‖ ≤ ‖x‖ ‖y‖
.
- norm : α → ℝ
- add : α → α → α
- zero : α
- nsmul : ℕ → α → α
- nsmul_zero : ∀ (x : α), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : α), AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
- neg : α → α
- sub : α → α → α
- zsmul : ℤ → α → α
- zsmul_zero' : ∀ (a : α), SubNegMonoid.zsmul 0 a = 0
- zsmul_succ' : ∀ (n : ℕ) (a : α), SubNegMonoid.zsmul (Int.ofNat (Nat.succ n)) a = a + SubNegMonoid.zsmul (Int.ofNat n) a
- zsmul_neg' : ∀ (n : ℕ) (a : α), SubNegMonoid.zsmul (Int.negSucc n) a = -SubNegMonoid.zsmul (↑(Nat.succ n)) a
- mul : α → α → α
- dist : α → α → ℝ
- edist : α → α → ENNReal
- edist_dist : ∀ (x y : α), PseudoMetricSpace.edist x y = ENNReal.ofReal (dist x y)
- toUniformSpace : UniformSpace α
- uniformity_dist : uniformity α = ⨅ (ε : ℝ), ⨅ (_ : ε > 0), Filter.principal {p : α × α | dist p.1 p.2 < ε}
- toBornology : Bornology α
The distance is induced by the norm.
The norm is submultiplicative.
Instances
A non-unital normed ring is a non-unital seminormed ring.
Equations
- NonUnitalNormedRing.toNonUnitalSeminormedRing = NonUnitalSeminormedRing.mk ⋯ ⋯
A normed ring is a ring endowed with a norm which satisfies the inequality ‖x y‖ ≤ ‖x‖ ‖y‖
.
- norm : α → ℝ
- add : α → α → α
- zero : α
- nsmul : ℕ → α → α
- nsmul_zero : ∀ (x : α), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : α), AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
- mul : α → α → α
- one : α
- natCast : ℕ → α
- natCast_zero : NatCast.natCast 0 = 0
- natCast_succ : ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1
- npow : ℕ → α → α
- npow_zero : ∀ (x : α), Semiring.npow 0 x = 1
- npow_succ : ∀ (n : ℕ) (x : α), Semiring.npow (n + 1) x = x * Semiring.npow n x
- neg : α → α
- sub : α → α → α
- zsmul : ℤ → α → α
- zsmul_zero' : ∀ (a : α), Ring.zsmul 0 a = 0
- zsmul_succ' : ∀ (n : ℕ) (a : α), Ring.zsmul (Int.ofNat (Nat.succ n)) a = a + Ring.zsmul (Int.ofNat n) a
- zsmul_neg' : ∀ (n : ℕ) (a : α), Ring.zsmul (Int.negSucc n) a = -Ring.zsmul (↑(Nat.succ n)) a
- intCast : ℤ → α
- intCast_ofNat : ∀ (n : ℕ), IntCast.intCast ↑n = ↑n
- intCast_negSucc : ∀ (n : ℕ), IntCast.intCast (Int.negSucc n) = -↑(n + 1)
- dist : α → α → ℝ
- edist : α → α → ENNReal
- edist_dist : ∀ (x y : α), PseudoMetricSpace.edist x y = ENNReal.ofReal (dist x y)
- toUniformSpace : UniformSpace α
- uniformity_dist : uniformity α = ⨅ (ε : ℝ), ⨅ (_ : ε > 0), Filter.principal {p : α × α | dist p.1 p.2 < ε}
- toBornology : Bornology α
The distance is induced by the norm.
The norm is submultiplicative.
Instances
A normed division ring is a division ring endowed with a seminorm which satisfies the equality
‖x y‖ = ‖x‖ ‖y‖
.
- norm : α → ℝ
- add : α → α → α
- zero : α
- nsmul : ℕ → α → α
- nsmul_zero : ∀ (x : α), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : α), AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
- mul : α → α → α
- one : α
- natCast : ℕ → α
- natCast_zero : NatCast.natCast 0 = 0
- natCast_succ : ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1
- npow : ℕ → α → α
- npow_zero : ∀ (x : α), Semiring.npow 0 x = 1
- npow_succ : ∀ (n : ℕ) (x : α), Semiring.npow (n + 1) x = x * Semiring.npow n x
- neg : α → α
- sub : α → α → α
- zsmul : ℤ → α → α
- zsmul_zero' : ∀ (a : α), Ring.zsmul 0 a = 0
- zsmul_succ' : ∀ (n : ℕ) (a : α), Ring.zsmul (Int.ofNat (Nat.succ n)) a = a + Ring.zsmul (Int.ofNat n) a
- zsmul_neg' : ∀ (n : ℕ) (a : α), Ring.zsmul (Int.negSucc n) a = -Ring.zsmul (↑(Nat.succ n)) a
- intCast : ℤ → α
- intCast_ofNat : ∀ (n : ℕ), IntCast.intCast ↑n = ↑n
- intCast_negSucc : ∀ (n : ℕ), IntCast.intCast (Int.negSucc n) = -↑(n + 1)
- inv : α → α
- div : α → α → α
- zpow : ℤ → α → α
- zpow_zero' : ∀ (a : α), DivisionRing.zpow 0 a = 1
- zpow_succ' : ∀ (n : ℕ) (a : α), DivisionRing.zpow (Int.ofNat (Nat.succ n)) a = a * DivisionRing.zpow (Int.ofNat n) a
- zpow_neg' : ∀ (n : ℕ) (a : α), DivisionRing.zpow (Int.negSucc n) a = (DivisionRing.zpow (↑(Nat.succ n)) a)⁻¹
- exists_pair_ne : ∃ (x : α) (y : α), x ≠ y
- ratCast : ℚ → α
- ratCast_mk : ∀ (a : ℤ) (b : ℕ) (h1 : b ≠ 0) (h2 : Nat.Coprime (Int.natAbs a) b), ↑{ num := a, den := b, den_nz := h1, reduced := h2 } = ↑a * (↑b)⁻¹
- qsmul : ℚ → α → α
- qsmul_eq_mul' : ∀ (a : ℚ) (x : α), DivisionRing.qsmul a x = ↑a * x
- dist : α → α → ℝ
- edist : α → α → ENNReal
- edist_dist : ∀ (x y : α), PseudoMetricSpace.edist x y = ENNReal.ofReal (dist x y)
- toUniformSpace : UniformSpace α
- uniformity_dist : uniformity α = ⨅ (ε : ℝ), ⨅ (_ : ε > 0), Filter.principal {p : α × α | dist p.1 p.2 < ε}
- toBornology : Bornology α
The distance is induced by the norm.
The norm is multiplicative.
Instances
A normed division ring is a normed ring.
Equations
- NormedDivisionRing.toNormedRing = NormedRing.mk ⋯ ⋯
A normed ring is a seminormed ring.
Equations
- NormedRing.toSeminormedRing = SeminormedRing.mk ⋯ ⋯
A normed ring is a non-unital normed ring.
Equations
- NormedRing.toNonUnitalNormedRing = NonUnitalNormedRing.mk ⋯ ⋯
A non-unital seminormed commutative ring is a non-unital commutative ring endowed with a
seminorm which satisfies the inequality ‖x y‖ ≤ ‖x‖ ‖y‖
.
- norm : α → ℝ
- add : α → α → α
- zero : α
- nsmul : ℕ → α → α
- nsmul_zero : ∀ (x : α), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : α), AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
- neg : α → α
- sub : α → α → α
- zsmul : ℤ → α → α
- zsmul_zero' : ∀ (a : α), SubNegMonoid.zsmul 0 a = 0
- zsmul_succ' : ∀ (n : ℕ) (a : α), SubNegMonoid.zsmul (Int.ofNat (Nat.succ n)) a = a + SubNegMonoid.zsmul (Int.ofNat n) a
- zsmul_neg' : ∀ (n : ℕ) (a : α), SubNegMonoid.zsmul (Int.negSucc n) a = -SubNegMonoid.zsmul (↑(Nat.succ n)) a
- mul : α → α → α
- dist : α → α → ℝ
- edist : α → α → ENNReal
- edist_dist : ∀ (x y : α), PseudoMetricSpace.edist x y = ENNReal.ofReal (dist x y)
- toUniformSpace : UniformSpace α
- uniformity_dist : uniformity α = ⨅ (ε : ℝ), ⨅ (_ : ε > 0), Filter.principal {p : α × α | dist p.1 p.2 < ε}
- toBornology : Bornology α
Multiplication is commutative.
Instances
A non-unital normed commutative ring is a non-unital commutative ring endowed with a
norm which satisfies the inequality ‖x y‖ ≤ ‖x‖ ‖y‖
.
- norm : α → ℝ
- add : α → α → α
- zero : α
- nsmul : ℕ → α → α
- nsmul_zero : ∀ (x : α), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : α), AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
- neg : α → α
- sub : α → α → α
- zsmul : ℤ → α → α
- zsmul_zero' : ∀ (a : α), SubNegMonoid.zsmul 0 a = 0
- zsmul_succ' : ∀ (n : ℕ) (a : α), SubNegMonoid.zsmul (Int.ofNat (Nat.succ n)) a = a + SubNegMonoid.zsmul (Int.ofNat n) a
- zsmul_neg' : ∀ (n : ℕ) (a : α), SubNegMonoid.zsmul (Int.negSucc n) a = -SubNegMonoid.zsmul (↑(Nat.succ n)) a
- mul : α → α → α
- dist : α → α → ℝ
- edist : α → α → ENNReal
- edist_dist : ∀ (x y : α), PseudoMetricSpace.edist x y = ENNReal.ofReal (dist x y)
- toUniformSpace : UniformSpace α
- uniformity_dist : uniformity α = ⨅ (ε : ℝ), ⨅ (_ : ε > 0), Filter.principal {p : α × α | dist p.1 p.2 < ε}
- toBornology : Bornology α
Multiplication is commutative.
Instances
A non-unital normed commutative ring is a non-unital seminormed commutative ring.
Equations
- NonUnitalNormedCommRing.toNonUnitalSeminormedCommRing = NonUnitalSeminormedCommRing.mk ⋯
A seminormed commutative ring is a commutative ring endowed with a seminorm which satisfies
the inequality ‖x y‖ ≤ ‖x‖ ‖y‖
.
- norm : α → ℝ
- add : α → α → α
- zero : α
- nsmul : ℕ → α → α
- nsmul_zero : ∀ (x : α), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : α), AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
- mul : α → α → α
- one : α
- natCast : ℕ → α
- natCast_zero : NatCast.natCast 0 = 0
- natCast_succ : ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1
- npow : ℕ → α → α
- npow_zero : ∀ (x : α), Semiring.npow 0 x = 1
- npow_succ : ∀ (n : ℕ) (x : α), Semiring.npow (n + 1) x = x * Semiring.npow n x
- neg : α → α
- sub : α → α → α
- zsmul : ℤ → α → α
- zsmul_zero' : ∀ (a : α), Ring.zsmul 0 a = 0
- zsmul_succ' : ∀ (n : ℕ) (a : α), Ring.zsmul (Int.ofNat (Nat.succ n)) a = a + Ring.zsmul (Int.ofNat n) a
- zsmul_neg' : ∀ (n : ℕ) (a : α), Ring.zsmul (Int.negSucc n) a = -Ring.zsmul (↑(Nat.succ n)) a
- intCast : ℤ → α
- intCast_ofNat : ∀ (n : ℕ), IntCast.intCast ↑n = ↑n
- intCast_negSucc : ∀ (n : ℕ), IntCast.intCast (Int.negSucc n) = -↑(n + 1)
- dist : α → α → ℝ
- edist : α → α → ENNReal
- edist_dist : ∀ (x y : α), PseudoMetricSpace.edist x y = ENNReal.ofReal (dist x y)
- toUniformSpace : UniformSpace α
- uniformity_dist : uniformity α = ⨅ (ε : ℝ), ⨅ (_ : ε > 0), Filter.principal {p : α × α | dist p.1 p.2 < ε}
- toBornology : Bornology α
Multiplication is commutative.
Instances
A normed commutative ring is a commutative ring endowed with a norm which satisfies
the inequality ‖x y‖ ≤ ‖x‖ ‖y‖
.
- norm : α → ℝ
- add : α → α → α
- zero : α
- nsmul : ℕ → α → α
- nsmul_zero : ∀ (x : α), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : α), AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
- mul : α → α → α
- one : α
- natCast : ℕ → α
- natCast_zero : NatCast.natCast 0 = 0
- natCast_succ : ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1
- npow : ℕ → α → α
- npow_zero : ∀ (x : α), Semiring.npow 0 x = 1
- npow_succ : ∀ (n : ℕ) (x : α), Semiring.npow (n + 1) x = x * Semiring.npow n x
- neg : α → α
- sub : α → α → α
- zsmul : ℤ → α → α
- zsmul_zero' : ∀ (a : α), Ring.zsmul 0 a = 0
- zsmul_succ' : ∀ (n : ℕ) (a : α), Ring.zsmul (Int.ofNat (Nat.succ n)) a = a + Ring.zsmul (Int.ofNat n) a
- zsmul_neg' : ∀ (n : ℕ) (a : α), Ring.zsmul (Int.negSucc n) a = -Ring.zsmul (↑(Nat.succ n)) a
- intCast : ℤ → α
- intCast_ofNat : ∀ (n : ℕ), IntCast.intCast ↑n = ↑n
- intCast_negSucc : ∀ (n : ℕ), IntCast.intCast (Int.negSucc n) = -↑(n + 1)
- dist : α → α → ℝ
- edist : α → α → ENNReal
- edist_dist : ∀ (x y : α), PseudoMetricSpace.edist x y = ENNReal.ofReal (dist x y)
- toUniformSpace : UniformSpace α
- uniformity_dist : uniformity α = ⨅ (ε : ℝ), ⨅ (_ : ε > 0), Filter.principal {p : α × α | dist p.1 p.2 < ε}
- toBornology : Bornology α
Multiplication is commutative.
Instances
A seminormed commutative ring is a non-unital seminormed commutative ring.
Equations
- SeminormedCommRing.toNonUnitalSeminormedCommRing = NonUnitalSeminormedCommRing.mk ⋯
A normed commutative ring is a non-unital normed commutative ring.
Equations
- NormedCommRing.toNonUnitalNormedCommRing = NonUnitalNormedCommRing.mk ⋯
A normed commutative ring is a seminormed commutative ring.
Equations
- NormedCommRing.toSeminormedCommRing = SeminormedCommRing.mk ⋯
Equations
- PUnit.normedCommRing = let __src := PUnit.normedAddCommGroup; let __src_1 := PUnit.commRing; NormedCommRing.mk ⋯
A mixin class with the axiom ‖1‖ = 1
. Many NormedRing
s and all NormedField
s satisfy this
axiom.
The norm of the multiplicative identity is 1.
Instances
Equations
- NonUnitalSeminormedCommRing.toNonUnitalCommRing = NonUnitalCommRing.mk ⋯
Equations
- SeminormedCommRing.toCommRing = CommRing.mk ⋯
Equations
- NonUnitalNormedRing.toNormedAddCommGroup = NormedAddCommGroup.mk ⋯
Equations
- NonUnitalSeminormedRing.toSeminormedAddCommGroup = let __src := inst; SeminormedAddCommGroup.mk ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
In a seminormed ring, the left-multiplication AddMonoidHom
is bounded.
In a seminormed ring, the right-multiplication AddMonoidHom
is bounded.
A non-unital subalgebra of a non-unital seminormed ring is also a non-unital seminormed ring, with the restriction of the norm.
Equations
- One or more equations did not get rendered due to their size.
A non-unital subalgebra of a non-unital normed ring is also a non-unital normed ring, with the restriction of the norm.
Equations
Equations
- ULift.nonUnitalSeminormedRing = let __src := ULift.seminormedAddCommGroup; let __src_1 := ULift.nonUnitalRing; NonUnitalSeminormedRing.mk ⋯ ⋯
Non-unital seminormed ring structure on the product of two non-unital seminormed rings, using the sup norm.
Equations
- Prod.nonUnitalSeminormedRing = let __src := Prod.seminormedAddCommGroup; let __src_1 := Prod.instNonUnitalRing; NonUnitalSeminormedRing.mk ⋯ ⋯
Non-unital seminormed ring structure on the product of finitely many non-unital seminormed rings, using the sup norm.
Equations
- Pi.nonUnitalSeminormedRing = let __src := Pi.seminormedAddCommGroup; let __src_1 := Pi.nonUnitalRing; NonUnitalSeminormedRing.mk ⋯ ⋯
Equations
- MulOpposite.nonUnitalSeminormedRing = let __src := MulOpposite.seminormedAddCommGroup; let __src_1 := MulOpposite.instNonUnitalRing α; NonUnitalSeminormedRing.mk ⋯ ⋯
A subalgebra of a seminormed ring is also a seminormed ring, with the restriction of the norm.
Equations
- Subalgebra.seminormedRing s = let __src := Submodule.seminormedAddCommGroup (Subalgebra.toSubmodule s); let __src_1 := Subalgebra.toRing s; SeminormedRing.mk ⋯ ⋯
A subalgebra of a normed ring is also a normed ring, with the restriction of the norm.
Equations
- Subalgebra.normedRing s = let __src := Subalgebra.seminormedRing s; NormedRing.mk ⋯ ⋯
If α
is a seminormed ring, then ‖a ^ n‖₊ ≤ ‖a‖₊ ^ n
for n > 0
.
See also nnnorm_pow_le
.
If α
is a seminormed ring with ‖1‖₊ = 1
, then ‖a ^ n‖₊ ≤ ‖a‖₊ ^ n
.
See also nnnorm_pow_le'
.
If α
is a seminormed ring, then ‖a ^ n‖ ≤ ‖a‖ ^ n
for n > 0
. See also norm_pow_le
.
If α
is a seminormed ring with ‖1‖ = 1
, then ‖a ^ n‖ ≤ ‖a‖ ^ n
. See also norm_pow_le'
.
Equations
- ULift.seminormedRing = let __src := ULift.nonUnitalSeminormedRing; let __src_1 := ULift.ring; SeminormedRing.mk ⋯ ⋯
Seminormed ring structure on the product of two seminormed rings, using the sup norm.
Equations
- Prod.seminormedRing = let __src := Prod.nonUnitalSeminormedRing; let __src_1 := Prod.instRing; SeminormedRing.mk ⋯ ⋯
Seminormed ring structure on the product of finitely many seminormed rings, using the sup norm.
Equations
- Pi.seminormedRing = let __src := Pi.nonUnitalSeminormedRing; let __src_1 := Pi.ring; SeminormedRing.mk ⋯ ⋯
Equations
- MulOpposite.seminormedRing = let __src := MulOpposite.nonUnitalSeminormedRing; let __src_1 := MulOpposite.instRing α; SeminormedRing.mk ⋯ ⋯
Equations
- ULift.nonUnitalNormedRing = let __src := ULift.nonUnitalSeminormedRing; let __src_1 := ULift.normedAddCommGroup; NonUnitalNormedRing.mk ⋯ ⋯
Non-unital normed ring structure on the product of two non-unital normed rings, using the sup norm.
Equations
- Prod.nonUnitalNormedRing = let __src := Prod.nonUnitalSeminormedRing; let __src_1 := Prod.normedAddCommGroup; NonUnitalNormedRing.mk ⋯ ⋯
Normed ring structure on the product of finitely many non-unital normed rings, using the sup norm.
Equations
- Pi.nonUnitalNormedRing = let __src := Pi.nonUnitalSeminormedRing; let __src_1 := Pi.normedAddCommGroup; NonUnitalNormedRing.mk ⋯ ⋯
Equations
- MulOpposite.nonUnitalNormedRing = let __src := MulOpposite.nonUnitalSeminormedRing; let __src_1 := MulOpposite.normedAddCommGroup; NonUnitalNormedRing.mk ⋯ ⋯
Equations
- ULift.normedRing = let __src := ULift.seminormedRing; let __src_1 := ULift.normedAddCommGroup; NormedRing.mk ⋯ ⋯
Normed ring structure on the product of two normed rings, using the sup norm.
Equations
- Prod.normedRing = let __src := Prod.nonUnitalNormedRing; let __src_1 := Prod.instRing; NormedRing.mk ⋯ ⋯
Normed ring structure on the product of finitely many normed rings, using the sup norm.
Equations
- Pi.normedRing = let __src := Pi.seminormedRing; let __src_1 := Pi.normedAddCommGroup; NormedRing.mk ⋯ ⋯
Equations
- MulOpposite.normedRing = let __src := MulOpposite.seminormedRing; let __src_1 := MulOpposite.normedAddCommGroup; NormedRing.mk ⋯ ⋯
Equations
- ULift.nonUnitalSeminormedCommRing = let __src := ULift.nonUnitalSeminormedRing; let __src_1 := ULift.nonUnitalCommRing; NonUnitalSeminormedCommRing.mk ⋯
Non-unital seminormed commutative ring structure on the product of two non-unital seminormed commutative rings, using the sup norm.
Equations
- Prod.nonUnitalSeminormedCommRing = let __src := Prod.nonUnitalSeminormedRing; let __src_1 := Prod.instNonUnitalCommRing; NonUnitalSeminormedCommRing.mk ⋯
Non-unital seminormed commutative ring structure on the product of finitely many non-unital seminormed commutative rings, using the sup norm.
Equations
- Pi.nonUnitalSeminormedCommRing = let __src := Pi.nonUnitalSeminormedRing; let __src_1 := Pi.nonUnitalCommRing; NonUnitalSeminormedCommRing.mk ⋯
Equations
- MulOpposite.nonUnitalSeminormedCommRing = let __src := MulOpposite.nonUnitalSeminormedRing; let __src_1 := MulOpposite.instNonUnitalCommRing α; NonUnitalSeminormedCommRing.mk ⋯
A non-unital subalgebra of a non-unital seminormed commutative ring is also a non-unital seminormed commutative ring, with the restriction of the norm.
Equations
- One or more equations did not get rendered due to their size.
A non-unital subalgebra of a non-unital normed commutative ring is also a non-unital normed commutative ring, with the restriction of the norm.
Equations
- One or more equations did not get rendered due to their size.
Equations
- ULift.nonUnitalNormedCommRing = let __src := ULift.nonUnitalSeminormedCommRing; let __src_1 := ULift.normedAddCommGroup; NonUnitalNormedCommRing.mk ⋯
Non-unital normed commutative ring structure on the product of two non-unital normed commutative rings, using the sup norm.
Equations
- Prod.nonUnitalNormedCommRing = let __src := Prod.nonUnitalSeminormedCommRing; let __src_1 := Prod.normedAddCommGroup; NonUnitalNormedCommRing.mk ⋯
Normed commutative ring structure on the product of finitely many non-unital normed commutative rings, using the sup norm.
Equations
- Pi.nonUnitalNormedCommRing = let __src := Pi.nonUnitalSeminormedCommRing; let __src_1 := Pi.normedAddCommGroup; NonUnitalNormedCommRing.mk ⋯
Equations
- MulOpposite.nonUnitalNormedCommRing = let __src := MulOpposite.nonUnitalSeminormedCommRing; let __src_1 := MulOpposite.normedAddCommGroup; NonUnitalNormedCommRing.mk ⋯
Equations
- ULift.seminormedCommRing = let __src := ULift.nonUnitalSeminormedRing; let __src_1 := ULift.commRing; SeminormedCommRing.mk ⋯
Seminormed commutative ring structure on the product of two seminormed commutative rings, using the sup norm.
Equations
- Prod.seminormedCommRing = let __src := Prod.nonUnitalSeminormedCommRing; let __src_1 := Prod.instCommRing; SeminormedCommRing.mk ⋯
Seminormed commutative ring structure on the product of finitely many seminormed commutative rings, using the sup norm.
Equations
- Pi.seminormedCommRing = let __src := Pi.nonUnitalSeminormedCommRing; let __src_1 := Pi.ring; SeminormedCommRing.mk ⋯
Equations
- MulOpposite.seminormedCommRing = let __src := MulOpposite.nonUnitalSeminormedCommRing; let __src_1 := MulOpposite.instRing α; SeminormedCommRing.mk ⋯
A subalgebra of a seminormed commutative ring is also a seminormed commutative ring, with the restriction of the norm.
Equations
- Subalgebra.seminormedCommRing s = let __src := Subalgebra.seminormedRing s; let __src_1 := Subalgebra.toCommRing s; SeminormedCommRing.mk ⋯
A subalgebra of a normed commutative ring is also a normed commutative ring, with the restriction of the norm.
Equations
- Subalgebra.normedCommRing s = let __src := Subalgebra.seminormedCommRing s; let __src_1 := Subalgebra.normedRing s; NormedCommRing.mk ⋯
Equations
- ULift.normedCommRing = let __src := ULift.normedRing; let __src_1 := ULift.seminormedCommRing; NormedCommRing.mk ⋯
Normed commutative ring structure on the product of two normed commutative rings, using the sup norm.
Equations
- Prod.normedCommRing = let __src := Prod.nonUnitalNormedRing; let __src_1 := Prod.instCommRing; NormedCommRing.mk ⋯
Normed commutative ring structure on the product of finitely many normed commutative rings, using the sup norm.
Equations
- Pi.normedCommutativeRing = let __src := Pi.seminormedCommRing; let __src_1 := Pi.normedAddCommGroup; NormedCommRing.mk ⋯
Equations
- MulOpposite.normedCommRing = let __src := MulOpposite.seminormedCommRing; let __src_1 := MulOpposite.normedAddCommGroup; NormedCommRing.mk ⋯
Equations
- ⋯ = ⋯
A seminormed ring is a topological ring.
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Multiplication by a nonzero element a
on the left
as a DilationEquiv
of a normed division ring.
Equations
- DilationEquiv.mulLeft a ha = { toEquiv := Equiv.mulLeft₀ a ha, edist_eq' := ⋯ }
Instances For
Multiplication by a nonzero element a
on the right
as a DilationEquiv
of a normed division ring.
Equations
- DilationEquiv.mulRight a ha = { toEquiv := Equiv.mulRight₀ a ha, edist_eq' := ⋯ }
Instances For
Multiplication on the left by a nonzero element of a normed division ring tends to infinity at infinity.
Multiplication on the right by a nonzero element of a normed division ring tends to infinity at infinity.
Equations
- ⋯ = ⋯
A normed division ring is a topological division ring.
Equations
- ⋯ = ⋯
A normed field is a field with a norm satisfying ‖x y‖ = ‖x‖ ‖y‖.
- norm : α → ℝ
- add : α → α → α
- zero : α
- nsmul : ℕ → α → α
- nsmul_zero : ∀ (x : α), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : α), AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
- mul : α → α → α
- one : α
- natCast : ℕ → α
- natCast_zero : NatCast.natCast 0 = 0
- natCast_succ : ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1
- npow : ℕ → α → α
- npow_zero : ∀ (x : α), Semiring.npow 0 x = 1
- npow_succ : ∀ (n : ℕ) (x : α), Semiring.npow (n + 1) x = x * Semiring.npow n x
- neg : α → α
- sub : α → α → α
- zsmul : ℤ → α → α
- zsmul_zero' : ∀ (a : α), Ring.zsmul 0 a = 0
- zsmul_succ' : ∀ (n : ℕ) (a : α), Ring.zsmul (Int.ofNat (Nat.succ n)) a = a + Ring.zsmul (Int.ofNat n) a
- zsmul_neg' : ∀ (n : ℕ) (a : α), Ring.zsmul (Int.negSucc n) a = -Ring.zsmul (↑(Nat.succ n)) a
- intCast : ℤ → α
- intCast_ofNat : ∀ (n : ℕ), IntCast.intCast ↑n = ↑n
- intCast_negSucc : ∀ (n : ℕ), IntCast.intCast (Int.negSucc n) = -↑(n + 1)
- inv : α → α
- div : α → α → α
- zpow : ℤ → α → α
- zpow_zero' : ∀ (a : α), Field.zpow 0 a = 1
- zpow_succ' : ∀ (n : ℕ) (a : α), Field.zpow (Int.ofNat (Nat.succ n)) a = a * Field.zpow (Int.ofNat n) a
- zpow_neg' : ∀ (n : ℕ) (a : α), Field.zpow (Int.negSucc n) a = (Field.zpow (↑(Nat.succ n)) a)⁻¹
- exists_pair_ne : ∃ (x : α) (y : α), x ≠ y
- ratCast : ℚ → α
- ratCast_mk : ∀ (a : ℤ) (b : ℕ) (h1 : b ≠ 0) (h2 : Nat.Coprime (Int.natAbs a) b), ↑{ num := a, den := b, den_nz := h1, reduced := h2 } = ↑a * (↑b)⁻¹
- qsmul : ℚ → α → α
- qsmul_eq_mul' : ∀ (a : ℚ) (x : α), Field.qsmul a x = ↑a * x
- dist : α → α → ℝ
- edist : α → α → ENNReal
- edist_dist : ∀ (x y : α), PseudoMetricSpace.edist x y = ENNReal.ofReal (dist x y)
- toUniformSpace : UniformSpace α
- uniformity_dist : uniformity α = ⨅ (ε : ℝ), ⨅ (_ : ε > 0), Filter.principal {p : α × α | dist p.1 p.2 < ε}
- toBornology : Bornology α
The distance is induced by the norm.
The norm is multiplicative.
Instances
A nontrivially normed field is a normed field in which there is an element of norm different
from 0
and 1
. This makes it possible to bring any element arbitrarily close to 0
by
multiplication by the powers of any element, and thus to relate algebra and topology.
- norm : α → ℝ
- add : α → α → α
- zero : α
- nsmul : ℕ → α → α
- nsmul_zero : ∀ (x : α), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : α), AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
- mul : α → α → α
- one : α
- natCast : ℕ → α
- natCast_zero : NatCast.natCast 0 = 0
- natCast_succ : ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1
- npow : ℕ → α → α
- npow_zero : ∀ (x : α), Semiring.npow 0 x = 1
- npow_succ : ∀ (n : ℕ) (x : α), Semiring.npow (n + 1) x = x * Semiring.npow n x
- neg : α → α
- sub : α → α → α
- zsmul : ℤ → α → α
- zsmul_zero' : ∀ (a : α), Ring.zsmul 0 a = 0
- zsmul_succ' : ∀ (n : ℕ) (a : α), Ring.zsmul (Int.ofNat (Nat.succ n)) a = a + Ring.zsmul (Int.ofNat n) a
- zsmul_neg' : ∀ (n : ℕ) (a : α), Ring.zsmul (Int.negSucc n) a = -Ring.zsmul (↑(Nat.succ n)) a
- intCast : ℤ → α
- intCast_ofNat : ∀ (n : ℕ), IntCast.intCast ↑n = ↑n
- intCast_negSucc : ∀ (n : ℕ), IntCast.intCast (Int.negSucc n) = -↑(n + 1)
- inv : α → α
- div : α → α → α
- zpow : ℤ → α → α
- zpow_zero' : ∀ (a : α), Field.zpow 0 a = 1
- zpow_succ' : ∀ (n : ℕ) (a : α), Field.zpow (Int.ofNat (Nat.succ n)) a = a * Field.zpow (Int.ofNat n) a
- zpow_neg' : ∀ (n : ℕ) (a : α), Field.zpow (Int.negSucc n) a = (Field.zpow (↑(Nat.succ n)) a)⁻¹
- exists_pair_ne : ∃ (x : α) (y : α), x ≠ y
- ratCast : ℚ → α
- ratCast_mk : ∀ (a : ℤ) (b : ℕ) (h1 : b ≠ 0) (h2 : Nat.Coprime (Int.natAbs a) b), ↑{ num := a, den := b, den_nz := h1, reduced := h2 } = ↑a * (↑b)⁻¹
- qsmul : ℚ → α → α
- qsmul_eq_mul' : ∀ (a : ℚ) (x : α), Field.qsmul a x = ↑a * x
- dist : α → α → ℝ
- edist : α → α → ENNReal
- edist_dist : ∀ (x y : α), PseudoMetricSpace.edist x y = ENNReal.ofReal (dist x y)
- toUniformSpace : UniformSpace α
- uniformity_dist : uniformity α = ⨅ (ε : ℝ), ⨅ (_ : ε > 0), Filter.principal {p : α × α | dist p.1 p.2 < ε}
- toBornology : Bornology α
The norm attains a value exceeding 1.
Instances
A densely normed field is a normed field for which the image of the norm is dense in ℝ≥0
,
which means it is also nontrivially normed. However, not all nontrivally normed fields are densely
normed; in particular, the Padic
s exhibit this fact.
- norm : α → ℝ
- add : α → α → α
- zero : α
- nsmul : ℕ → α → α
- nsmul_zero : ∀ (x : α), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : α), AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
- mul : α → α → α
- one : α
- natCast : ℕ → α
- natCast_zero : NatCast.natCast 0 = 0
- natCast_succ : ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1
- npow : ℕ → α → α
- npow_zero : ∀ (x : α), Semiring.npow 0 x = 1
- npow_succ : ∀ (n : ℕ) (x : α), Semiring.npow (n + 1) x = x * Semiring.npow n x
- neg : α → α
- sub : α → α → α
- zsmul : ℤ → α → α
- zsmul_zero' : ∀ (a : α), Ring.zsmul 0 a = 0
- zsmul_succ' : ∀ (n : ℕ) (a : α), Ring.zsmul (Int.ofNat (Nat.succ n)) a = a + Ring.zsmul (Int.ofNat n) a
- zsmul_neg' : ∀ (n : ℕ) (a : α), Ring.zsmul (Int.negSucc n) a = -Ring.zsmul (↑(Nat.succ n)) a
- intCast : ℤ → α
- intCast_ofNat : ∀ (n : ℕ), IntCast.intCast ↑n = ↑n
- intCast_negSucc : ∀ (n : ℕ), IntCast.intCast (Int.negSucc n) = -↑(n + 1)
- inv : α → α
- div : α → α → α
- zpow : ℤ → α → α
- zpow_zero' : ∀ (a : α), Field.zpow 0 a = 1
- zpow_succ' : ∀ (n : ℕ) (a : α), Field.zpow (Int.ofNat (Nat.succ n)) a = a * Field.zpow (Int.ofNat n) a
- zpow_neg' : ∀ (n : ℕ) (a : α), Field.zpow (Int.negSucc n) a = (Field.zpow (↑(Nat.succ n)) a)⁻¹
- exists_pair_ne : ∃ (x : α) (y : α), x ≠ y
- ratCast : ℚ → α
- ratCast_mk : ∀ (a : ℤ) (b : ℕ) (h1 : b ≠ 0) (h2 : Nat.Coprime (Int.natAbs a) b), ↑{ num := a, den := b, den_nz := h1, reduced := h2 } = ↑a * (↑b)⁻¹
- qsmul : ℚ → α → α
- qsmul_eq_mul' : ∀ (a : ℚ) (x : α), Field.qsmul a x = ↑a * x
- dist : α → α → ℝ
- edist : α → α → ENNReal
- edist_dist : ∀ (x y : α), PseudoMetricSpace.edist x y = ENNReal.ofReal (dist x y)
- toUniformSpace : UniformSpace α
- uniformity_dist : uniformity α = ⨅ (ε : ℝ), ⨅ (_ : ε > 0), Filter.principal {p : α × α | dist p.1 p.2 < ε}
- toBornology : Bornology α
The range of the norm is dense in the collection of nonnegative real numbers.
Instances
A densely normed field is always a nontrivially normed field. See note [lower instance priority].
Equations
- DenselyNormedField.toNontriviallyNormedField = NontriviallyNormedField.mk ⋯
Equations
- NormedField.toNormedDivisionRing = let __src := inst; NormedDivisionRing.mk ⋯ ⋯
Equations
- NormedField.toNormedCommRing = let __src := inst; NormedCommRing.mk ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
A normed field is nontrivially normed provided that the norm of some nonzero element is not one.
Instances For
Equations
- Real.normedCommRing = let __src := Real.normedAddCommGroup; let __src_1 := Real.commRing; NormedCommRing.mk ⋯
Equations
- Real.normedField = let __src := Real.normedAddCommGroup; let __src_1 := Real.field; NormedField.mk ⋯ ⋯
A restatement of MetricSpace.tendsto_atTop
in terms of the norm.
A variant of NormedAddCommGroup.tendsto_atTop
that
uses ∃ N, ∀ n > N, ...
rather than ∃ N, ∀ n ≥ N, ...
Equations
- Int.normedCommRing = let __src := Int.normedAddCommGroup; let __src_1 := Int.instRingInt; NormedCommRing.mk Int.normedCommRing.proof_19
Equations
- Rat.normedField = let __src := Rat.normedAddCommGroup; let __src_1 := Rat.field; NormedField.mk ⋯ Rat.normedField.proof_21
This class states that a ring homomorphism is isometric. This is a sufficient assumption for a continuous semilinear map to be bounded and this is the main use for this typeclass.
The ring homomorphism is an isometry.
Instances
Equations
- ⋯ = ⋯
Induced normed structures #
A non-unital ring homomorphism from a NonUnitalRing
to a NonUnitalSeminormedRing
induces a NonUnitalSeminormedRing
structure on the domain.
See note [reducible non-instances]
Equations
- NonUnitalSeminormedRing.induced R S f = let __src := SeminormedAddCommGroup.induced R S f; let __src_1 := inst✝¹; NonUnitalSeminormedRing.mk ⋯ ⋯
Instances For
An injective non-unital ring homomorphism from a NonUnitalRing
to a
NonUnitalNormedRing
induces a NonUnitalNormedRing
structure on the domain.
See note [reducible non-instances]
Equations
- NonUnitalNormedRing.induced R S f hf = let __src := NonUnitalSeminormedRing.induced R S f; let __src_1 := NormedAddCommGroup.induced R S f hf; NonUnitalNormedRing.mk ⋯ ⋯
Instances For
A non-unital ring homomorphism from a Ring
to a SeminormedRing
induces a
SeminormedRing
structure on the domain.
See note [reducible non-instances]
Equations
- SeminormedRing.induced R S f = let __src := NonUnitalSeminormedRing.induced R S f; let __src_1 := SeminormedAddCommGroup.induced R S f; let __src_2 := inst✝¹; SeminormedRing.mk ⋯ ⋯
Instances For
An injective non-unital ring homomorphism from a Ring
to a NormedRing
induces a
NormedRing
structure on the domain.
See note [reducible non-instances]
Equations
- NormedRing.induced R S f hf = let __src := NonUnitalSeminormedRing.induced R S f; let __src_1 := NormedAddCommGroup.induced R S f hf; let __src_2 := inst✝¹; NormedRing.mk ⋯ ⋯
Instances For
A non-unital ring homomorphism from a NonUnitalCommRing
to a NonUnitalSeminormedCommRing
induces a NonUnitalSeminormedCommRing
structure on the domain.
See note [reducible non-instances]
Equations
- NonUnitalSeminormedCommRing.induced R S f = let __src := NonUnitalSeminormedRing.induced R S f; let __src_1 := inst✝¹; NonUnitalSeminormedCommRing.mk ⋯
Instances For
An injective non-unital ring homomorphism from a NonUnitalCommRing
to a
NonUnitalNormedCommRing
induces a NonUnitalNormedCommRing
structure on the domain.
See note [reducible non-instances]
Equations
- NonUnitalNormedCommRing.induced R S f hf = let __src := NonUnitalNormedRing.induced R S f hf; let __src_1 := inst✝¹; NonUnitalNormedCommRing.mk ⋯
Instances For
A non-unital ring homomorphism from a CommRing
to a SeminormedRing
induces a
SeminormedCommRing
structure on the domain.
See note [reducible non-instances]
Equations
- SeminormedCommRing.induced R S f = let __src := NonUnitalSeminormedRing.induced R S f; let __src_1 := SeminormedAddCommGroup.induced R S f; let __src_2 := inst✝¹; SeminormedCommRing.mk ⋯
Instances For
An injective non-unital ring homomorphism from a CommRing
to a NormedRing
induces a
NormedCommRing
structure on the domain.
See note [reducible non-instances]
Equations
- NormedCommRing.induced R S f hf = let __src := SeminormedCommRing.induced R S f; let __src_1 := NormedAddCommGroup.induced R S f hf; NormedCommRing.mk ⋯
Instances For
An injective non-unital ring homomorphism from a DivisionRing
to a NormedRing
induces a
NormedDivisionRing
structure on the domain.
See note [reducible non-instances]
Equations
- NormedDivisionRing.induced R S f hf = let __src := NormedAddCommGroup.induced R S f hf; let __src_1 := inst✝¹; NormedDivisionRing.mk ⋯ ⋯
Instances For
An injective non-unital ring homomorphism from a Field
to a NormedRing
induces a
NormedField
structure on the domain.
See note [reducible non-instances]
Equations
- NormedField.induced R S f hf = let __src := NormedDivisionRing.induced R S f hf; NormedField.mk ⋯ ⋯
Instances For
A ring homomorphism from a Ring R
to a SeminormedRing S
which induces the norm structure
SeminormedRing.induced
makes R
satisfy ‖(1 : R)‖ = 1
whenever ‖(1 : S)‖ = 1
.
Equations
Equations
- SubringClass.toNormedRing s = NormedRing.induced (↥s) R (SubringClass.subtype s) ⋯
Equations
- SubringClass.toSeminormedCommRing s = let __src := SubringClass.toSeminormedRing s; SeminormedCommRing.mk ⋯
Equations
- SubringClass.toNormedCommRing s = let __src := SubringClass.toNormedRing s; NormedCommRing.mk ⋯