Additive operations on derivatives #
For detailed documentation of the FrΓ©chet derivative,
see the module docstring of Analysis/Calculus/FDeriv/Basic.lean
.
This file contains the usual formulas (and existence assertions) for the derivative of
- sum of finitely many functions
- multiplication of a function by a scalar constant
- negative of a function
- subtraction of two functions
Derivative of a function multiplied by a constant #
theorem
HasStrictFDerivAt.const_smul
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{f' : E βL[π] F}
{x : E}
{R : Type u_6}
[Semiring R]
[Module R F]
[SMulCommClass π R F]
[ContinuousConstSMul R F]
(h : HasStrictFDerivAt f f' x)
(c : R)
:
HasStrictFDerivAt (fun (x : E) => c β’ f x) (c β’ f') x
theorem
HasFDerivAtFilter.const_smul
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{f' : E βL[π] F}
{x : E}
{L : Filter E}
{R : Type u_6}
[Semiring R]
[Module R F]
[SMulCommClass π R F]
[ContinuousConstSMul R F]
(h : HasFDerivAtFilter f f' x L)
(c : R)
:
HasFDerivAtFilter (fun (x : E) => c β’ f x) (c β’ f') x L
theorem
HasFDerivWithinAt.const_smul
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{f' : E βL[π] F}
{x : E}
{s : Set E}
{R : Type u_6}
[Semiring R]
[Module R F]
[SMulCommClass π R F]
[ContinuousConstSMul R F]
(h : HasFDerivWithinAt f f' s x)
(c : R)
:
HasFDerivWithinAt (fun (x : E) => c β’ f x) (c β’ f') s x
theorem
HasFDerivAt.const_smul
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{f' : E βL[π] F}
{x : E}
{R : Type u_6}
[Semiring R]
[Module R F]
[SMulCommClass π R F]
[ContinuousConstSMul R F]
(h : HasFDerivAt f f' x)
(c : R)
:
HasFDerivAt (fun (x : E) => c β’ f x) (c β’ f') x
theorem
DifferentiableWithinAt.const_smul
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
{s : Set E}
{R : Type u_6}
[Semiring R]
[Module R F]
[SMulCommClass π R F]
[ContinuousConstSMul R F]
(h : DifferentiableWithinAt π f s x)
(c : R)
:
DifferentiableWithinAt π (fun (y : E) => c β’ f y) s x
theorem
DifferentiableAt.const_smul
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
{R : Type u_6}
[Semiring R]
[Module R F]
[SMulCommClass π R F]
[ContinuousConstSMul R F]
(h : DifferentiableAt π f x)
(c : R)
:
DifferentiableAt π (fun (y : E) => c β’ f y) x
theorem
DifferentiableOn.const_smul
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{s : Set E}
{R : Type u_6}
[Semiring R]
[Module R F]
[SMulCommClass π R F]
[ContinuousConstSMul R F]
(h : DifferentiableOn π f s)
(c : R)
:
DifferentiableOn π (fun (y : E) => c β’ f y) s
theorem
Differentiable.const_smul
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{R : Type u_6}
[Semiring R]
[Module R F]
[SMulCommClass π R F]
[ContinuousConstSMul R F]
(h : Differentiable π f)
(c : R)
:
Differentiable π fun (y : E) => c β’ f y
theorem
fderivWithin_const_smul
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
{s : Set E}
{R : Type u_6}
[Semiring R]
[Module R F]
[SMulCommClass π R F]
[ContinuousConstSMul R F]
(hxs : UniqueDiffWithinAt π s x)
(h : DifferentiableWithinAt π f s x)
(c : R)
:
fderivWithin π (fun (y : E) => c β’ f y) s x = c β’ fderivWithin π f s x
theorem
fderiv_const_smul
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
{R : Type u_6}
[Semiring R]
[Module R F]
[SMulCommClass π R F]
[ContinuousConstSMul R F]
(h : DifferentiableAt π f x)
(c : R)
:
Derivative of the sum of two functions #
theorem
HasStrictFDerivAt.add
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{g : E β F}
{f' : E βL[π] F}
{g' : E βL[π] F}
{x : E}
(hf : HasStrictFDerivAt f f' x)
(hg : HasStrictFDerivAt g g' x)
:
HasStrictFDerivAt (fun (y : E) => f y + g y) (f' + g') x
theorem
HasFDerivAtFilter.add
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{g : E β F}
{f' : E βL[π] F}
{g' : E βL[π] F}
{x : E}
{L : Filter E}
(hf : HasFDerivAtFilter f f' x L)
(hg : HasFDerivAtFilter g g' x L)
:
HasFDerivAtFilter (fun (y : E) => f y + g y) (f' + g') x L
theorem
HasFDerivWithinAt.add
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{g : E β F}
{f' : E βL[π] F}
{g' : E βL[π] F}
{x : E}
{s : Set E}
(hf : HasFDerivWithinAt f f' s x)
(hg : HasFDerivWithinAt g g' s x)
:
HasFDerivWithinAt (fun (y : E) => f y + g y) (f' + g') s x
theorem
HasFDerivAt.add
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{g : E β F}
{f' : E βL[π] F}
{g' : E βL[π] F}
{x : E}
(hf : HasFDerivAt f f' x)
(hg : HasFDerivAt g g' x)
:
HasFDerivAt (fun (x : E) => f x + g x) (f' + g') x
theorem
DifferentiableWithinAt.add
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{g : E β F}
{x : E}
{s : Set E}
(hf : DifferentiableWithinAt π f s x)
(hg : DifferentiableWithinAt π g s x)
:
DifferentiableWithinAt π (fun (y : E) => f y + g y) s x
@[simp]
theorem
DifferentiableAt.add
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{g : E β F}
{x : E}
(hf : DifferentiableAt π f x)
(hg : DifferentiableAt π g x)
:
DifferentiableAt π (fun (y : E) => f y + g y) x
theorem
DifferentiableOn.add
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{g : E β F}
{s : Set E}
(hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s)
:
DifferentiableOn π (fun (y : E) => f y + g y) s
@[simp]
theorem
Differentiable.add
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{g : E β F}
(hf : Differentiable π f)
(hg : Differentiable π g)
:
Differentiable π fun (y : E) => f y + g y
theorem
fderivWithin_add
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{g : E β F}
{x : E}
{s : Set E}
(hxs : UniqueDiffWithinAt π s x)
(hf : DifferentiableWithinAt π f s x)
(hg : DifferentiableWithinAt π g s x)
:
fderivWithin π (fun (y : E) => f y + g y) s x = fderivWithin π f s x + fderivWithin π g s x
theorem
fderiv_add
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{g : E β F}
{x : E}
(hf : DifferentiableAt π f x)
(hg : DifferentiableAt π g x)
:
theorem
HasStrictFDerivAt.add_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{f' : E βL[π] F}
{x : E}
(hf : HasStrictFDerivAt f f' x)
(c : F)
:
HasStrictFDerivAt (fun (y : E) => f y + c) f' x
theorem
HasFDerivAtFilter.add_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{f' : E βL[π] F}
{x : E}
{L : Filter E}
(hf : HasFDerivAtFilter f f' x L)
(c : F)
:
HasFDerivAtFilter (fun (y : E) => f y + c) f' x L
theorem
HasFDerivWithinAt.add_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{f' : E βL[π] F}
{x : E}
{s : Set E}
(hf : HasFDerivWithinAt f f' s x)
(c : F)
:
HasFDerivWithinAt (fun (y : E) => f y + c) f' s x
theorem
HasFDerivAt.add_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{f' : E βL[π] F}
{x : E}
(hf : HasFDerivAt f f' x)
(c : F)
:
HasFDerivAt (fun (x : E) => f x + c) f' x
theorem
DifferentiableWithinAt.add_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
{s : Set E}
(hf : DifferentiableWithinAt π f s x)
(c : F)
:
DifferentiableWithinAt π (fun (y : E) => f y + c) s x
@[simp]
theorem
differentiableWithinAt_add_const_iff
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
{s : Set E}
(c : F)
:
DifferentiableWithinAt π (fun (y : E) => f y + c) s x β DifferentiableWithinAt π f s x
theorem
DifferentiableAt.add_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
(hf : DifferentiableAt π f x)
(c : F)
:
DifferentiableAt π (fun (y : E) => f y + c) x
@[simp]
theorem
differentiableAt_add_const_iff
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
(c : F)
:
DifferentiableAt π (fun (y : E) => f y + c) x β DifferentiableAt π f x
theorem
DifferentiableOn.add_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{s : Set E}
(hf : DifferentiableOn π f s)
(c : F)
:
DifferentiableOn π (fun (y : E) => f y + c) s
@[simp]
theorem
differentiableOn_add_const_iff
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{s : Set E}
(c : F)
:
DifferentiableOn π (fun (y : E) => f y + c) s β DifferentiableOn π f s
theorem
Differentiable.add_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
(hf : Differentiable π f)
(c : F)
:
Differentiable π fun (y : E) => f y + c
@[simp]
theorem
differentiable_add_const_iff
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
(c : F)
:
(Differentiable π fun (y : E) => f y + c) β Differentiable π f
theorem
fderivWithin_add_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
{s : Set E}
(hxs : UniqueDiffWithinAt π s x)
(c : F)
:
fderivWithin π (fun (y : E) => f y + c) s x = fderivWithin π f s x
theorem
fderiv_add_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
(c : F)
:
theorem
HasStrictFDerivAt.const_add
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{f' : E βL[π] F}
{x : E}
(hf : HasStrictFDerivAt f f' x)
(c : F)
:
HasStrictFDerivAt (fun (y : E) => c + f y) f' x
theorem
HasFDerivAtFilter.const_add
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{f' : E βL[π] F}
{x : E}
{L : Filter E}
(hf : HasFDerivAtFilter f f' x L)
(c : F)
:
HasFDerivAtFilter (fun (y : E) => c + f y) f' x L
theorem
HasFDerivWithinAt.const_add
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{f' : E βL[π] F}
{x : E}
{s : Set E}
(hf : HasFDerivWithinAt f f' s x)
(c : F)
:
HasFDerivWithinAt (fun (y : E) => c + f y) f' s x
theorem
HasFDerivAt.const_add
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{f' : E βL[π] F}
{x : E}
(hf : HasFDerivAt f f' x)
(c : F)
:
HasFDerivAt (fun (x : E) => c + f x) f' x
theorem
DifferentiableWithinAt.const_add
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
{s : Set E}
(hf : DifferentiableWithinAt π f s x)
(c : F)
:
DifferentiableWithinAt π (fun (y : E) => c + f y) s x
@[simp]
theorem
differentiableWithinAt_const_add_iff
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
{s : Set E}
(c : F)
:
DifferentiableWithinAt π (fun (y : E) => c + f y) s x β DifferentiableWithinAt π f s x
theorem
DifferentiableAt.const_add
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
(hf : DifferentiableAt π f x)
(c : F)
:
DifferentiableAt π (fun (y : E) => c + f y) x
@[simp]
theorem
differentiableAt_const_add_iff
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
(c : F)
:
DifferentiableAt π (fun (y : E) => c + f y) x β DifferentiableAt π f x
theorem
DifferentiableOn.const_add
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{s : Set E}
(hf : DifferentiableOn π f s)
(c : F)
:
DifferentiableOn π (fun (y : E) => c + f y) s
@[simp]
theorem
differentiableOn_const_add_iff
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{s : Set E}
(c : F)
:
DifferentiableOn π (fun (y : E) => c + f y) s β DifferentiableOn π f s
theorem
Differentiable.const_add
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
(hf : Differentiable π f)
(c : F)
:
Differentiable π fun (y : E) => c + f y
@[simp]
theorem
differentiable_const_add_iff
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
(c : F)
:
(Differentiable π fun (y : E) => c + f y) β Differentiable π f
theorem
fderivWithin_const_add
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
{s : Set E}
(hxs : UniqueDiffWithinAt π s x)
(c : F)
:
fderivWithin π (fun (y : E) => c + f y) s x = fderivWithin π f s x
theorem
fderiv_const_add
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
(c : F)
:
Derivative of a finite sum of functions #
theorem
HasStrictFDerivAt.sum
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{x : E}
{ΞΉ : Type u_6}
{u : Finset ΞΉ}
{A : ΞΉ β E β F}
{A' : ΞΉ β E βL[π] F}
(h : β i β u, HasStrictFDerivAt (A i) (A' i) x)
:
HasStrictFDerivAt (fun (y : E) => Finset.sum u fun (i : ΞΉ) => A i y) (Finset.sum u fun (i : ΞΉ) => A' i) x
theorem
HasFDerivAtFilter.sum
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{x : E}
{L : Filter E}
{ΞΉ : Type u_6}
{u : Finset ΞΉ}
{A : ΞΉ β E β F}
{A' : ΞΉ β E βL[π] F}
(h : β i β u, HasFDerivAtFilter (A i) (A' i) x L)
:
HasFDerivAtFilter (fun (y : E) => Finset.sum u fun (i : ΞΉ) => A i y) (Finset.sum u fun (i : ΞΉ) => A' i) x L
theorem
HasFDerivWithinAt.sum
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{x : E}
{s : Set E}
{ΞΉ : Type u_6}
{u : Finset ΞΉ}
{A : ΞΉ β E β F}
{A' : ΞΉ β E βL[π] F}
(h : β i β u, HasFDerivWithinAt (A i) (A' i) s x)
:
HasFDerivWithinAt (fun (y : E) => Finset.sum u fun (i : ΞΉ) => A i y) (Finset.sum u fun (i : ΞΉ) => A' i) s x
theorem
HasFDerivAt.sum
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{x : E}
{ΞΉ : Type u_6}
{u : Finset ΞΉ}
{A : ΞΉ β E β F}
{A' : ΞΉ β E βL[π] F}
(h : β i β u, HasFDerivAt (A i) (A' i) x)
:
HasFDerivAt (fun (y : E) => Finset.sum u fun (i : ΞΉ) => A i y) (Finset.sum u fun (i : ΞΉ) => A' i) x
theorem
DifferentiableWithinAt.sum
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{x : E}
{s : Set E}
{ΞΉ : Type u_6}
{u : Finset ΞΉ}
{A : ΞΉ β E β F}
(h : β i β u, DifferentiableWithinAt π (A i) s x)
:
DifferentiableWithinAt π (fun (y : E) => Finset.sum u fun (i : ΞΉ) => A i y) s x
@[simp]
theorem
DifferentiableAt.sum
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{x : E}
{ΞΉ : Type u_6}
{u : Finset ΞΉ}
{A : ΞΉ β E β F}
(h : β i β u, DifferentiableAt π (A i) x)
:
DifferentiableAt π (fun (y : E) => Finset.sum u fun (i : ΞΉ) => A i y) x
theorem
DifferentiableOn.sum
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{s : Set E}
{ΞΉ : Type u_6}
{u : Finset ΞΉ}
{A : ΞΉ β E β F}
(h : β i β u, DifferentiableOn π (A i) s)
:
DifferentiableOn π (fun (y : E) => Finset.sum u fun (i : ΞΉ) => A i y) s
@[simp]
theorem
Differentiable.sum
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{ΞΉ : Type u_6}
{u : Finset ΞΉ}
{A : ΞΉ β E β F}
(h : β i β u, Differentiable π (A i))
:
Differentiable π fun (y : E) => Finset.sum u fun (i : ΞΉ) => A i y
theorem
fderivWithin_sum
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{x : E}
{s : Set E}
{ΞΉ : Type u_6}
{u : Finset ΞΉ}
{A : ΞΉ β E β F}
(hxs : UniqueDiffWithinAt π s x)
(h : β i β u, DifferentiableWithinAt π (A i) s x)
:
fderivWithin π (fun (y : E) => Finset.sum u fun (i : ΞΉ) => A i y) s x = Finset.sum u fun (i : ΞΉ) => fderivWithin π (A i) s x
theorem
fderiv_sum
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{x : E}
{ΞΉ : Type u_6}
{u : Finset ΞΉ}
{A : ΞΉ β E β F}
(h : β i β u, DifferentiableAt π (A i) x)
:
fderiv π (fun (y : E) => Finset.sum u fun (i : ΞΉ) => A i y) x = Finset.sum u fun (i : ΞΉ) => fderiv π (A i) x
Derivative of the negative of a function #
theorem
HasStrictFDerivAt.neg
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{f' : E βL[π] F}
{x : E}
(h : HasStrictFDerivAt f f' x)
:
HasStrictFDerivAt (fun (x : E) => -f x) (-f') x
theorem
HasFDerivAtFilter.neg
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{f' : E βL[π] F}
{x : E}
{L : Filter E}
(h : HasFDerivAtFilter f f' x L)
:
HasFDerivAtFilter (fun (x : E) => -f x) (-f') x L
theorem
HasFDerivWithinAt.neg
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{f' : E βL[π] F}
{x : E}
{s : Set E}
(h : HasFDerivWithinAt f f' s x)
:
HasFDerivWithinAt (fun (x : E) => -f x) (-f') s x
theorem
HasFDerivAt.neg
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{f' : E βL[π] F}
{x : E}
(h : HasFDerivAt f f' x)
:
HasFDerivAt (fun (x : E) => -f x) (-f') x
theorem
DifferentiableWithinAt.neg
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
{s : Set E}
(h : DifferentiableWithinAt π f s x)
:
DifferentiableWithinAt π (fun (y : E) => -f y) s x
@[simp]
theorem
differentiableWithinAt_neg_iff
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
{s : Set E}
:
DifferentiableWithinAt π (fun (y : E) => -f y) s x β DifferentiableWithinAt π f s x
theorem
DifferentiableAt.neg
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
(h : DifferentiableAt π f x)
:
DifferentiableAt π (fun (y : E) => -f y) x
@[simp]
theorem
differentiableAt_neg_iff
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
:
DifferentiableAt π (fun (y : E) => -f y) x β DifferentiableAt π f x
theorem
DifferentiableOn.neg
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{s : Set E}
(h : DifferentiableOn π f s)
:
DifferentiableOn π (fun (y : E) => -f y) s
@[simp]
theorem
differentiableOn_neg_iff
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{s : Set E}
:
DifferentiableOn π (fun (y : E) => -f y) s β DifferentiableOn π f s
theorem
Differentiable.neg
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
(h : Differentiable π f)
:
Differentiable π fun (y : E) => -f y
@[simp]
theorem
differentiable_neg_iff
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
:
(Differentiable π fun (y : E) => -f y) β Differentiable π f
theorem
fderivWithin_neg
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
{s : Set E}
(hxs : UniqueDiffWithinAt π s x)
:
fderivWithin π (fun (y : E) => -f y) s x = -fderivWithin π f s x
@[simp]
theorem
fderiv_neg
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
:
Derivative of the difference of two functions #
theorem
HasStrictFDerivAt.sub
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{g : E β F}
{f' : E βL[π] F}
{g' : E βL[π] F}
{x : E}
(hf : HasStrictFDerivAt f f' x)
(hg : HasStrictFDerivAt g g' x)
:
HasStrictFDerivAt (fun (x : E) => f x - g x) (f' - g') x
theorem
HasFDerivAtFilter.sub
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{g : E β F}
{f' : E βL[π] F}
{g' : E βL[π] F}
{x : E}
{L : Filter E}
(hf : HasFDerivAtFilter f f' x L)
(hg : HasFDerivAtFilter g g' x L)
:
HasFDerivAtFilter (fun (x : E) => f x - g x) (f' - g') x L
theorem
HasFDerivWithinAt.sub
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{g : E β F}
{f' : E βL[π] F}
{g' : E βL[π] F}
{x : E}
{s : Set E}
(hf : HasFDerivWithinAt f f' s x)
(hg : HasFDerivWithinAt g g' s x)
:
HasFDerivWithinAt (fun (x : E) => f x - g x) (f' - g') s x
theorem
HasFDerivAt.sub
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{g : E β F}
{f' : E βL[π] F}
{g' : E βL[π] F}
{x : E}
(hf : HasFDerivAt f f' x)
(hg : HasFDerivAt g g' x)
:
HasFDerivAt (fun (x : E) => f x - g x) (f' - g') x
theorem
DifferentiableWithinAt.sub
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{g : E β F}
{x : E}
{s : Set E}
(hf : DifferentiableWithinAt π f s x)
(hg : DifferentiableWithinAt π g s x)
:
DifferentiableWithinAt π (fun (y : E) => f y - g y) s x
@[simp]
theorem
DifferentiableAt.sub
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{g : E β F}
{x : E}
(hf : DifferentiableAt π f x)
(hg : DifferentiableAt π g x)
:
DifferentiableAt π (fun (y : E) => f y - g y) x
theorem
DifferentiableOn.sub
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{g : E β F}
{s : Set E}
(hf : DifferentiableOn π f s)
(hg : DifferentiableOn π g s)
:
DifferentiableOn π (fun (y : E) => f y - g y) s
@[simp]
theorem
Differentiable.sub
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{g : E β F}
(hf : Differentiable π f)
(hg : Differentiable π g)
:
Differentiable π fun (y : E) => f y - g y
theorem
fderivWithin_sub
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{g : E β F}
{x : E}
{s : Set E}
(hxs : UniqueDiffWithinAt π s x)
(hf : DifferentiableWithinAt π f s x)
(hg : DifferentiableWithinAt π g s x)
:
fderivWithin π (fun (y : E) => f y - g y) s x = fderivWithin π f s x - fderivWithin π g s x
theorem
fderiv_sub
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{g : E β F}
{x : E}
(hf : DifferentiableAt π f x)
(hg : DifferentiableAt π g x)
:
theorem
HasStrictFDerivAt.sub_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{f' : E βL[π] F}
{x : E}
(hf : HasStrictFDerivAt f f' x)
(c : F)
:
HasStrictFDerivAt (fun (x : E) => f x - c) f' x
theorem
HasFDerivAtFilter.sub_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{f' : E βL[π] F}
{x : E}
{L : Filter E}
(hf : HasFDerivAtFilter f f' x L)
(c : F)
:
HasFDerivAtFilter (fun (x : E) => f x - c) f' x L
theorem
HasFDerivWithinAt.sub_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{f' : E βL[π] F}
{x : E}
{s : Set E}
(hf : HasFDerivWithinAt f f' s x)
(c : F)
:
HasFDerivWithinAt (fun (x : E) => f x - c) f' s x
theorem
HasFDerivAt.sub_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{f' : E βL[π] F}
{x : E}
(hf : HasFDerivAt f f' x)
(c : F)
:
HasFDerivAt (fun (x : E) => f x - c) f' x
theorem
hasStrictFDerivAt_sub_const
{π : Type u_1}
[NontriviallyNormedField π]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{x : F}
(c : F)
:
HasStrictFDerivAt (fun (x : F) => x - c) (ContinuousLinearMap.id π F) x
theorem
hasFDerivAt_sub_const
{π : Type u_1}
[NontriviallyNormedField π]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{x : F}
(c : F)
:
HasFDerivAt (fun (x : F) => x - c) (ContinuousLinearMap.id π F) x
theorem
DifferentiableWithinAt.sub_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
{s : Set E}
(hf : DifferentiableWithinAt π f s x)
(c : F)
:
DifferentiableWithinAt π (fun (y : E) => f y - c) s x
@[simp]
theorem
differentiableWithinAt_sub_const_iff
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
{s : Set E}
(c : F)
:
DifferentiableWithinAt π (fun (y : E) => f y - c) s x β DifferentiableWithinAt π f s x
theorem
DifferentiableAt.sub_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
(hf : DifferentiableAt π f x)
(c : F)
:
DifferentiableAt π (fun (y : E) => f y - c) x
@[simp]
theorem
differentiableAt_sub_const_iff
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
(c : F)
:
DifferentiableAt π (fun (y : E) => f y - c) x β DifferentiableAt π f x
theorem
DifferentiableOn.sub_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{s : Set E}
(hf : DifferentiableOn π f s)
(c : F)
:
DifferentiableOn π (fun (y : E) => f y - c) s
@[simp]
theorem
differentiableOn_sub_const_iff
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{s : Set E}
(c : F)
:
DifferentiableOn π (fun (y : E) => f y - c) s β DifferentiableOn π f s
theorem
Differentiable.sub_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
(hf : Differentiable π f)
(c : F)
:
Differentiable π fun (y : E) => f y - c
@[simp]
theorem
differentiable_sub_const_iff
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
(c : F)
:
(Differentiable π fun (y : E) => f y - c) β Differentiable π f
theorem
fderivWithin_sub_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
{s : Set E}
(hxs : UniqueDiffWithinAt π s x)
(c : F)
:
fderivWithin π (fun (y : E) => f y - c) s x = fderivWithin π f s x
theorem
fderiv_sub_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
(c : F)
:
theorem
HasStrictFDerivAt.const_sub
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{f' : E βL[π] F}
{x : E}
(hf : HasStrictFDerivAt f f' x)
(c : F)
:
HasStrictFDerivAt (fun (x : E) => c - f x) (-f') x
theorem
HasFDerivAtFilter.const_sub
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{f' : E βL[π] F}
{x : E}
{L : Filter E}
(hf : HasFDerivAtFilter f f' x L)
(c : F)
:
HasFDerivAtFilter (fun (x : E) => c - f x) (-f') x L
theorem
HasFDerivWithinAt.const_sub
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{f' : E βL[π] F}
{x : E}
{s : Set E}
(hf : HasFDerivWithinAt f f' s x)
(c : F)
:
HasFDerivWithinAt (fun (x : E) => c - f x) (-f') s x
theorem
HasFDerivAt.const_sub
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{f' : E βL[π] F}
{x : E}
(hf : HasFDerivAt f f' x)
(c : F)
:
HasFDerivAt (fun (x : E) => c - f x) (-f') x
theorem
DifferentiableWithinAt.const_sub
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
{s : Set E}
(hf : DifferentiableWithinAt π f s x)
(c : F)
:
DifferentiableWithinAt π (fun (y : E) => c - f y) s x
@[simp]
theorem
differentiableWithinAt_const_sub_iff
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
{s : Set E}
(c : F)
:
DifferentiableWithinAt π (fun (y : E) => c - f y) s x β DifferentiableWithinAt π f s x
theorem
DifferentiableAt.const_sub
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
(hf : DifferentiableAt π f x)
(c : F)
:
DifferentiableAt π (fun (y : E) => c - f y) x
@[simp]
theorem
differentiableAt_const_sub_iff
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
(c : F)
:
DifferentiableAt π (fun (y : E) => c - f y) x β DifferentiableAt π f x
theorem
DifferentiableOn.const_sub
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{s : Set E}
(hf : DifferentiableOn π f s)
(c : F)
:
DifferentiableOn π (fun (y : E) => c - f y) s
@[simp]
theorem
differentiableOn_const_sub_iff
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{s : Set E}
(c : F)
:
DifferentiableOn π (fun (y : E) => c - f y) s β DifferentiableOn π f s
theorem
Differentiable.const_sub
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
(hf : Differentiable π f)
(c : F)
:
Differentiable π fun (y : E) => c - f y
@[simp]
theorem
differentiable_const_sub_iff
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
(c : F)
:
(Differentiable π fun (y : E) => c - f y) β Differentiable π f
theorem
fderivWithin_const_sub
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
{s : Set E}
(hxs : UniqueDiffWithinAt π s x)
(c : F)
:
fderivWithin π (fun (y : E) => c - f y) s x = -fderivWithin π f s x
theorem
fderiv_const_sub
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
(c : F)
: