Documentation

Mathlib.Analysis.Normed.Field.UnitBall

Algebraic structures on unit balls and spheres #

In this file we define algebraic structures (Semigroup, CommSemigroup, Monoid, CommMonoid, Group, CommGroup) on Metric.ball (0 : ๐•œ) 1, Metric.closedBall (0 : ๐•œ) 1, and Metric.sphere (0 : ๐•œ) 1. In each case we use the weakest possible typeclass assumption on ๐•œ, from NonUnitalSeminormedRing to NormedField.

def Subsemigroup.unitBall (๐•œ : Type u_2) [NonUnitalSeminormedRing ๐•œ] :
Subsemigroup ๐•œ

Unit ball in a non unital semi normed ring as a bundled Subsemigroup.

Equations
instance Metric.unitBall.semigroup {๐•œ : Type u_1} [NonUnitalSeminormedRing ๐•œ] :
Semigroup โ†‘(Metric.ball 0 1)
Equations
instance Metric.unitBall.continuousMul {๐•œ : Type u_1} [NonUnitalSeminormedRing ๐•œ] :
Equations
  • โ‹ฏ = โ‹ฏ
instance Metric.unitBall.commSemigroup {๐•œ : Type u_1} [SeminormedCommRing ๐•œ] :
Equations
instance Metric.unitBall.hasDistribNeg {๐•œ : Type u_1} [NonUnitalSeminormedRing ๐•œ] :
Equations
@[simp]
theorem coe_mul_unitBall {๐•œ : Type u_1} [NonUnitalSeminormedRing ๐•œ] (x : โ†‘(Metric.ball 0 1)) (y : โ†‘(Metric.ball 0 1)) :
โ†‘(x * y) = โ†‘x * โ†‘y
def Subsemigroup.unitClosedBall (๐•œ : Type u_2) [NonUnitalSeminormedRing ๐•œ] :
Subsemigroup ๐•œ

Closed unit ball in a non unital semi normed ring as a bundled Subsemigroup.

Equations
instance Metric.unitClosedBall.semigroup {๐•œ : Type u_1} [NonUnitalSeminormedRing ๐•œ] :
Equations
Equations
Equations
  • โ‹ฏ = โ‹ฏ
@[simp]
theorem coe_mul_unitClosedBall {๐•œ : Type u_1} [NonUnitalSeminormedRing ๐•œ] (x : โ†‘(Metric.closedBall 0 1)) (y : โ†‘(Metric.closedBall 0 1)) :
โ†‘(x * y) = โ†‘x * โ†‘y
def Submonoid.unitClosedBall (๐•œ : Type u_2) [SeminormedRing ๐•œ] [NormOneClass ๐•œ] :
Submonoid ๐•œ

Closed unit ball in a semi normed ring as a bundled Submonoid.

Equations
instance Metric.unitClosedBall.monoid {๐•œ : Type u_1} [SeminormedRing ๐•œ] [NormOneClass ๐•œ] :
Equations
instance Metric.unitClosedBall.commMonoid {๐•œ : Type u_1} [SeminormedCommRing ๐•œ] [NormOneClass ๐•œ] :
Equations
@[simp]
theorem coe_one_unitClosedBall {๐•œ : Type u_1} [SeminormedRing ๐•œ] [NormOneClass ๐•œ] :
โ†‘1 = 1
@[simp]
theorem coe_pow_unitClosedBall {๐•œ : Type u_1} [SeminormedRing ๐•œ] [NormOneClass ๐•œ] (x : โ†‘(Metric.closedBall 0 1)) (n : โ„•) :
โ†‘(x ^ n) = โ†‘x ^ n
def Submonoid.unitSphere (๐•œ : Type u_2) [NormedDivisionRing ๐•œ] :
Submonoid ๐•œ

Unit sphere in a normed division ring as a bundled Submonoid.

Equations
instance Metric.unitSphere.inv {๐•œ : Type u_1} [NormedDivisionRing ๐•œ] :
Inv โ†‘(Metric.sphere 0 1)
Equations
@[simp]
theorem coe_inv_unitSphere {๐•œ : Type u_1} [NormedDivisionRing ๐•œ] (x : โ†‘(Metric.sphere 0 1)) :
โ†‘xโปยน = (โ†‘x)โปยน
instance Metric.unitSphere.div {๐•œ : Type u_1} [NormedDivisionRing ๐•œ] :
Div โ†‘(Metric.sphere 0 1)
Equations
  • Metric.unitSphere.div = { div := fun (x y : โ†‘(Metric.sphere 0 1)) => { val := โ†‘x / โ†‘y, property := โ‹ฏ } }
@[simp]
theorem coe_div_unitSphere {๐•œ : Type u_1} [NormedDivisionRing ๐•œ] (x : โ†‘(Metric.sphere 0 1)) (y : โ†‘(Metric.sphere 0 1)) :
โ†‘(x / y) = โ†‘x / โ†‘y
instance Metric.unitSphere.pow {๐•œ : Type u_1} [NormedDivisionRing ๐•œ] :
Equations
  • Metric.unitSphere.pow = { pow := fun (x : โ†‘(Metric.sphere 0 1)) (n : โ„ค) => { val := โ†‘x ^ n, property := โ‹ฏ } }
@[simp]
theorem coe_zpow_unitSphere {๐•œ : Type u_1} [NormedDivisionRing ๐•œ] (x : โ†‘(Metric.sphere 0 1)) (n : โ„ค) :
โ†‘(x ^ n) = โ†‘x ^ n
instance Metric.unitSphere.monoid {๐•œ : Type u_1} [NormedDivisionRing ๐•œ] :
Monoid โ†‘(Metric.sphere 0 1)
Equations
@[simp]
theorem coe_one_unitSphere {๐•œ : Type u_1} [NormedDivisionRing ๐•œ] :
โ†‘1 = 1
@[simp]
theorem coe_mul_unitSphere {๐•œ : Type u_1} [NormedDivisionRing ๐•œ] (x : โ†‘(Metric.sphere 0 1)) (y : โ†‘(Metric.sphere 0 1)) :
โ†‘(x * y) = โ†‘x * โ†‘y
@[simp]
theorem coe_pow_unitSphere {๐•œ : Type u_1} [NormedDivisionRing ๐•œ] (x : โ†‘(Metric.sphere 0 1)) (n : โ„•) :
โ†‘(x ^ n) = โ†‘x ^ n
def unitSphereToUnits (๐•œ : Type u_2) [NormedDivisionRing ๐•œ] :
โ†‘(Metric.sphere 0 1) โ†’* ๐•œหฃ

Monoid homomorphism from the unit sphere to the group of units.

Equations
@[simp]
theorem unitSphereToUnits_apply_coe {๐•œ : Type u_1} [NormedDivisionRing ๐•œ] (x : โ†‘(Metric.sphere 0 1)) :
โ†‘((unitSphereToUnits ๐•œ) x) = โ†‘x
theorem unitSphereToUnits_injective {๐•œ : Type u_1} [NormedDivisionRing ๐•œ] :
instance Metric.sphere.group {๐•œ : Type u_1} [NormedDivisionRing ๐•œ] :
Group โ†‘(Metric.sphere 0 1)
Equations
instance Metric.sphere.hasDistribNeg {๐•œ : Type u_1} [NormedDivisionRing ๐•œ] :
Equations
instance Metric.sphere.topologicalGroup {๐•œ : Type u_1} [NormedDivisionRing ๐•œ] :
Equations
  • โ‹ฏ = โ‹ฏ
instance Metric.sphere.commGroup {๐•œ : Type u_1} [NormedField ๐•œ] :
Equations