The derivative map on polynomials #
Main definitions #
Polynomial.derivative
: The formal derivative of polynomials, expressed as a linear map.
derivative p
is the formal derivative of the polynomial p
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
Polynomial.coeff_derivative
{R : Type u}
[Semiring R]
(p : Polynomial R)
(n : ℕ)
:
Polynomial.coeff (Polynomial.derivative p) n = Polynomial.coeff p (n + 1) * (↑n + 1)
@[simp]
theorem
Polynomial.derivative_monomial
{R : Type u}
[Semiring R]
(a : R)
(n : ℕ)
:
Polynomial.derivative ((Polynomial.monomial n) a) = (Polynomial.monomial (n - 1)) (a * ↑n)
@[simp]
theorem
Polynomial.derivative_C
{R : Type u}
[Semiring R]
{a : R}
:
Polynomial.derivative (Polynomial.C a) = 0
theorem
Polynomial.derivative_of_natDegree_zero
{R : Type u}
[Semiring R]
{p : Polynomial R}
(hp : Polynomial.natDegree p = 0)
:
Polynomial.derivative p = 0
@[simp]
@[simp]
theorem
Polynomial.derivative_sum
{R : Type u}
{ι : Type y}
[Semiring R]
{s : Finset ι}
{f : ι → Polynomial R}
:
Polynomial.derivative (Finset.sum s fun (b : ι) => f b) = Finset.sum s fun (b : ι) => Polynomial.derivative (f b)
theorem
Polynomial.derivative_smul
{R : Type u}
[Semiring R]
{S : Type u_1}
[Monoid S]
[DistribMulAction S R]
[IsScalarTower S R R]
(s : S)
(p : Polynomial R)
:
@[simp]
theorem
Polynomial.iterate_derivative_smul
{R : Type u}
[Semiring R]
{S : Type u_1}
[Monoid S]
[DistribMulAction S R]
[IsScalarTower S R R]
(s : S)
(p : Polynomial R)
(k : ℕ)
:
theorem
Polynomial.of_mem_support_derivative
{R : Type u}
[Semiring R]
{p : Polynomial R}
{n : ℕ}
(h : n ∈ Polynomial.support (Polynomial.derivative p))
:
n + 1 ∈ Polynomial.support p
theorem
Polynomial.degree_derivative_lt
{R : Type u}
[Semiring R]
{p : Polynomial R}
(hp : p ≠ 0)
:
Polynomial.degree (Polynomial.derivative p) < Polynomial.degree p
theorem
Polynomial.degree_derivative_le
{R : Type u}
[Semiring R]
{p : Polynomial R}
:
Polynomial.degree (Polynomial.derivative p) ≤ Polynomial.degree p
theorem
Polynomial.natDegree_derivative_lt
{R : Type u}
[Semiring R]
{p : Polynomial R}
(hp : Polynomial.natDegree p ≠ 0)
:
Polynomial.natDegree (Polynomial.derivative p) < Polynomial.natDegree p
theorem
Polynomial.natDegree_derivative_le
{R : Type u}
[Semiring R]
(p : Polynomial R)
:
Polynomial.natDegree (Polynomial.derivative p) ≤ Polynomial.natDegree p - 1
theorem
Polynomial.natDegree_iterate_derivative
{R : Type u}
[Semiring R]
(p : Polynomial R)
(k : ℕ)
:
Polynomial.natDegree ((⇑Polynomial.derivative)^[k] p) ≤ Polynomial.natDegree p - k
@[simp]
theorem
Polynomial.derivative_ofNat
{R : Type u}
[Semiring R]
(n : ℕ)
[Nat.AtLeastTwo n]
:
Polynomial.derivative (OfNat.ofNat n) = 0
theorem
Polynomial.iterate_derivative_eq_zero
{R : Type u}
[Semiring R]
{p : Polynomial R}
{x : ℕ}
(hx : Polynomial.natDegree p < x)
:
theorem
Polynomial.natDegree_eq_zero_of_derivative_eq_zero
{R : Type u}
[Semiring R]
[NoZeroSMulDivisors ℕ R]
{f : Polynomial R}
(h : Polynomial.derivative f = 0)
:
theorem
Polynomial.eq_C_of_derivative_eq_zero
{R : Type u}
[Semiring R]
[NoZeroSMulDivisors ℕ R]
{f : Polynomial R}
(h : Polynomial.derivative f = 0)
:
f = Polynomial.C (Polynomial.coeff f 0)
@[simp]
theorem
Polynomial.derivative_eval
{R : Type u}
[Semiring R]
(p : Polynomial R)
(x : R)
:
Polynomial.eval x (Polynomial.derivative p) = Polynomial.sum p fun (n : ℕ) (a : R) => a * ↑n * x ^ (n - 1)
@[simp]
theorem
Polynomial.derivative_map
{R : Type u}
{S : Type v}
[Semiring R]
[Semiring S]
(p : Polynomial R)
(f : R →+* S)
:
Polynomial.derivative (Polynomial.map f p) = Polynomial.map f (Polynomial.derivative p)
@[simp]
theorem
Polynomial.iterate_derivative_map
{R : Type u}
{S : Type v}
[Semiring R]
[Semiring S]
(p : Polynomial R)
(f : R →+* S)
(k : ℕ)
:
(⇑Polynomial.derivative)^[k] (Polynomial.map f p) = Polynomial.map f ((⇑Polynomial.derivative)^[k] p)
theorem
Polynomial.mem_support_derivative
{R : Type u}
[Semiring R]
[NoZeroSMulDivisors ℕ R]
(p : Polynomial R)
(n : ℕ)
:
n ∈ Polynomial.support (Polynomial.derivative p) ↔ n + 1 ∈ Polynomial.support p
@[simp]
theorem
Polynomial.degree_derivative_eq
{R : Type u}
[Semiring R]
[NoZeroSMulDivisors ℕ R]
(p : Polynomial R)
(hp : 0 < Polynomial.natDegree p)
:
Polynomial.degree (Polynomial.derivative p) = ↑(Polynomial.natDegree p - 1)
theorem
Polynomial.coeff_iterate_derivative
{R : Type u}
[Semiring R]
{k : ℕ}
(p : Polynomial R)
(m : ℕ)
:
Polynomial.coeff ((⇑Polynomial.derivative)^[k] p) m = Nat.descFactorial (m + k) k • Polynomial.coeff p (m + k)
theorem
Polynomial.iterate_derivative_mul
{R : Type u}
[Semiring R]
{n : ℕ}
(p : Polynomial R)
(q : Polynomial R)
:
theorem
Polynomial.pow_sub_one_dvd_derivative_of_pow_dvd
{R : Type u}
[CommSemiring R]
{p : Polynomial R}
{q : Polynomial R}
{n : ℕ}
(dvd : q ^ n ∣ p)
:
theorem
Polynomial.pow_sub_dvd_iterate_derivative_of_pow_dvd
{R : Type u}
[CommSemiring R]
{p : Polynomial R}
{q : Polynomial R}
{n : ℕ}
(m : ℕ)
(dvd : q ^ n ∣ p)
:
theorem
Polynomial.pow_sub_dvd_iterate_derivative_pow
{R : Type u}
[CommSemiring R]
(p : Polynomial R)
(n : ℕ)
(m : ℕ)
:
theorem
Polynomial.dvd_iterate_derivative_pow
{R : Type u}
[CommSemiring R]
(f : Polynomial R)
(n : ℕ)
{m : ℕ}
(c : R)
(hm : m ≠ 0)
:
↑n ∣ Polynomial.eval c ((⇑Polynomial.derivative)^[m] (f ^ n))
theorem
Polynomial.iterate_derivative_X_pow_eq_nat_cast_mul
{R : Type u}
[CommSemiring R]
(n : ℕ)
(k : ℕ)
:
theorem
Polynomial.iterate_derivative_X_pow_eq_C_mul
{R : Type u}
[CommSemiring R]
(n : ℕ)
(k : ℕ)
:
theorem
Polynomial.derivative_comp
{R : Type u}
[CommSemiring R]
(p : Polynomial R)
(q : Polynomial R)
:
Polynomial.derivative (Polynomial.comp p q) = Polynomial.derivative q * Polynomial.comp (Polynomial.derivative p) q
theorem
Polynomial.derivative_eval₂_C
{R : Type u}
[CommSemiring R]
(p : Polynomial R)
(q : Polynomial R)
:
Polynomial.derivative (Polynomial.eval₂ Polynomial.C q p) = Polynomial.eval₂ Polynomial.C q (Polynomial.derivative p) * Polynomial.derivative q
Chain rule for formal derivative of polynomials.
theorem
Polynomial.derivative_prod
{R : Type u}
{ι : Type y}
[CommSemiring R]
[DecidableEq ι]
{s : Multiset ι}
{f : ι → Polynomial R}
:
Polynomial.derivative (Multiset.prod (Multiset.map f s)) = Multiset.sum
(Multiset.map (fun (i : ι) => Multiset.prod (Multiset.map f (Multiset.erase s i)) * Polynomial.derivative (f i)) s)
theorem
Polynomial.derivative_comp_one_sub_X
{R : Type u}
[CommRing R]
(p : Polynomial R)
:
Polynomial.derivative (Polynomial.comp p (1 - Polynomial.X)) = -Polynomial.comp (Polynomial.derivative p) (1 - Polynomial.X)
@[simp]
theorem
Polynomial.iterate_derivative_comp_one_sub_X
{R : Type u}
[CommRing R]
(p : Polynomial R)
(k : ℕ)
:
theorem
Polynomial.eval_multiset_prod_X_sub_C_derivative
{R : Type u}
[CommRing R]
[DecidableEq R]
{S : Multiset R}
{r : R}
(hr : r ∈ S)
:
Polynomial.eval r
(Polynomial.derivative (Multiset.prod (Multiset.map (fun (a : R) => Polynomial.X - Polynomial.C a) S))) = Multiset.prod (Multiset.map (fun (a : R) => r - a) (Multiset.erase S r))