Documentation

Mathlib.Data.Polynomial.Eval

Theory of univariate polynomials #

The main defs here are eval₂, eval, and map. We give several lemmas about their interaction with each other and with module operations.

theorem Polynomial.eval₂_def {R : Type u_1} {S : Type u_2} [Semiring R] [Semiring S] (f : R →+* S) (x : S) (p : Polynomial R) :
Polynomial.eval₂ f x p = Polynomial.sum p fun (e : ) (a : R) => f a * x ^ e
@[irreducible]
def Polynomial.eval₂ {R : Type u_1} {S : Type u_2} [Semiring R] [Semiring S] (f : R →+* S) (x : S) (p : Polynomial R) :
S

Evaluate a polynomial p given a ring hom f from the scalar ring to the target and a value x for the variable in the target

Equations
theorem Polynomial.eval₂_eq_sum {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} [Semiring S] {f : R →+* S} {x : S} :
Polynomial.eval₂ f x p = Polynomial.sum p fun (e : ) (a : R) => f a * x ^ e
theorem Polynomial.eval₂_congr {R : Type u_1} {S : Type u_2} [Semiring R] [Semiring S] {f : R →+* S} {g : R →+* S} {s : S} {t : S} {φ : Polynomial R} {ψ : Polynomial R} :
f = gs = tφ = ψPolynomial.eval₂ f s φ = Polynomial.eval₂ g t ψ
@[simp]
theorem Polynomial.eval₂_at_zero {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} [Semiring S] (f : R →+* S) :
@[simp]
theorem Polynomial.eval₂_zero {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) (x : S) :
@[simp]
theorem Polynomial.eval₂_C {R : Type u} {S : Type v} {a : R} [Semiring R] [Semiring S] (f : R →+* S) (x : S) :
Polynomial.eval₂ f x (Polynomial.C a) = f a
@[simp]
theorem Polynomial.eval₂_X {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) (x : S) :
Polynomial.eval₂ f x Polynomial.X = x
@[simp]
theorem Polynomial.eval₂_monomial {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) (x : S) {n : } {r : R} :
@[simp]
theorem Polynomial.eval₂_X_pow {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) (x : S) {n : } :
Polynomial.eval₂ f x (Polynomial.X ^ n) = x ^ n
@[simp]
theorem Polynomial.eval₂_add {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} {q : Polynomial R} [Semiring S] (f : R →+* S) (x : S) :
@[simp]
theorem Polynomial.eval₂_one {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) (x : S) :
@[simp]
theorem Polynomial.eval₂_bit0 {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} [Semiring S] (f : R →+* S) (x : S) :
@[simp]
theorem Polynomial.eval₂_bit1 {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} [Semiring S] (f : R →+* S) (x : S) :
@[simp]
theorem Polynomial.eval₂_smul {R : Type u} {S : Type v} [Semiring R] [Semiring S] (g : R →+* S) (p : Polynomial R) (x : S) {s : R} :
@[simp]
theorem Polynomial.eval₂_C_X {R : Type u} [Semiring R] {p : Polynomial R} :
Polynomial.eval₂ Polynomial.C Polynomial.X p = p
@[simp]
def Polynomial.eval₂AddMonoidHom {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) (x : S) :

eval₂AddMonoidHom (f : R →+* S) (x : S) is the AddMonoidHom from R[X] to S obtained by evaluating the pushforward of p along f at x.

Equations
@[simp]
theorem Polynomial.eval₂_nat_cast {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) (x : S) (n : ) :
Polynomial.eval₂ f x n = n
@[simp]
theorem Polynomial.eval₂_ofNat {R : Type u} [Semiring R] {S : Type u_1} [Semiring S] (n : ) [Nat.AtLeastTwo n] (f : R →+* S) (a : S) :
theorem Polynomial.eval₂_sum {R : Type u} {S : Type v} {T : Type w} [Semiring R] [Semiring S] (f : R →+* S) [Semiring T] (p : Polynomial T) (g : TPolynomial R) (x : S) :
Polynomial.eval₂ f x (Polynomial.sum p g) = Polynomial.sum p fun (n : ) (a : T) => Polynomial.eval₂ f x (g n a)
theorem Polynomial.eval₂_list_sum {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) (l : List (Polynomial R)) (x : S) :
theorem Polynomial.eval₂_finset_sum {R : Type u} {S : Type v} {ι : Type y} [Semiring R] [Semiring S] (f : R →+* S) (s : Finset ι) (g : ιPolynomial R) (x : S) :
Polynomial.eval₂ f x (Finset.sum s fun (i : ι) => g i) = Finset.sum s fun (i : ι) => Polynomial.eval₂ f x (g i)
theorem Polynomial.eval₂_ofFinsupp {R : Type u} {S : Type v} [Semiring R] [Semiring S] {f : R →+* S} {x : S} {p : AddMonoidAlgebra R } :
Polynomial.eval₂ f x { toFinsupp := p } = (AddMonoidAlgebra.liftNC f ((powersHom S) x)) p
theorem Polynomial.eval₂_mul_noncomm {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} {q : Polynomial R} [Semiring S] (f : R →+* S) (x : S) (hf : ∀ (k : ), Commute (f (Polynomial.coeff q k)) x) :
@[simp]
theorem Polynomial.eval₂_mul_X {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} [Semiring S] (f : R →+* S) (x : S) :
Polynomial.eval₂ f x (p * Polynomial.X) = Polynomial.eval₂ f x p * x
@[simp]
theorem Polynomial.eval₂_X_mul {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} [Semiring S] (f : R →+* S) (x : S) :
Polynomial.eval₂ f x (Polynomial.X * p) = Polynomial.eval₂ f x p * x
theorem Polynomial.eval₂_mul_C' {R : Type u} {S : Type v} {a : R} [Semiring R] {p : Polynomial R} [Semiring S] (f : R →+* S) (x : S) (h : Commute (f a) x) :
Polynomial.eval₂ f x (p * Polynomial.C a) = Polynomial.eval₂ f x p * f a
theorem Polynomial.eval₂_list_prod_noncomm {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) (x : S) (ps : List (Polynomial R)) (hf : pps, ∀ (k : ), Commute (f (Polynomial.coeff p k)) x) :
@[simp]
theorem Polynomial.eval₂RingHom'_apply {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) (x : S) (hf : ∀ (a : R), Commute (f a) x) (p : Polynomial R) :
def Polynomial.eval₂RingHom' {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) (x : S) (hf : ∀ (a : R), Commute (f a) x) :

eval₂ as a RingHom for noncommutative rings

Equations

We next prove that eval₂ is multiplicative as long as target ring is commutative (even if the source ring is not).

theorem Polynomial.eval₂_eq_sum_range {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} [Semiring S] (f : R →+* S) (x : S) :
theorem Polynomial.eval₂_eq_sum_range' {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) {p : Polynomial R} {n : } (hn : Polynomial.natDegree p < n) (x : S) :
Polynomial.eval₂ f x p = Finset.sum (Finset.range n) fun (i : ) => f (Polynomial.coeff p i) * x ^ i
@[simp]
theorem Polynomial.eval₂_mul {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} {q : Polynomial R} [CommSemiring S] (f : R →+* S) (x : S) :
theorem Polynomial.eval₂_mul_eq_zero_of_left {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} [CommSemiring S] (f : R →+* S) (x : S) (q : Polynomial R) (hp : Polynomial.eval₂ f x p = 0) :
Polynomial.eval₂ f x (p * q) = 0
theorem Polynomial.eval₂_mul_eq_zero_of_right {R : Type u} {S : Type v} [Semiring R] {q : Polynomial R} [CommSemiring S] (f : R →+* S) (x : S) (p : Polynomial R) (hq : Polynomial.eval₂ f x q = 0) :
Polynomial.eval₂ f x (p * q) = 0
def Polynomial.eval₂RingHom {R : Type u} {S : Type v} [Semiring R] [CommSemiring S] (f : R →+* S) (x : S) :

eval₂ as a RingHom

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem Polynomial.coe_eval₂RingHom {R : Type u} {S : Type v} [Semiring R] [CommSemiring S] (f : R →+* S) (x : S) :
theorem Polynomial.eval₂_pow {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} [CommSemiring S] (f : R →+* S) (x : S) (n : ) :
theorem Polynomial.eval₂_dvd {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} {q : Polynomial R} [CommSemiring S] (f : R →+* S) (x : S) :
theorem Polynomial.eval₂_eq_zero_of_dvd_of_eval₂_eq_zero {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} {q : Polynomial R} [CommSemiring S] (f : R →+* S) (x : S) (h : p q) (h0 : Polynomial.eval₂ f x p = 0) :
def Polynomial.eval {R : Type u} [Semiring R] :
RPolynomial RR

eval x p is the evaluation of the polynomial p at x

Equations
theorem Polynomial.eval_eq_sum {R : Type u} [Semiring R] {p : Polynomial R} {x : R} :
Polynomial.eval x p = Polynomial.sum p fun (e : ) (a : R) => a * x ^ e
theorem Polynomial.eval_eq_sum_range' {R : Type u} [Semiring R] {p : Polynomial R} {n : } (hn : Polynomial.natDegree p < n) (x : R) :
@[simp]
theorem Polynomial.eval₂_at_apply {R : Type u} [Semiring R] {p : Polynomial R} {S : Type u_1} [Semiring S] (f : R →+* S) (r : R) :
@[simp]
theorem Polynomial.eval₂_at_one {R : Type u} [Semiring R] {p : Polynomial R} {S : Type u_1} [Semiring S] (f : R →+* S) :
@[simp]
theorem Polynomial.eval₂_at_nat_cast {R : Type u} [Semiring R] {p : Polynomial R} {S : Type u_1} [Semiring S] (f : R →+* S) (n : ) :
Polynomial.eval₂ f (n) p = f (Polynomial.eval (n) p)
@[simp]
theorem Polynomial.eval₂_at_ofNat {R : Type u} [Semiring R] {p : Polynomial R} {S : Type u_1} [Semiring S] (f : R →+* S) (n : ) [Nat.AtLeastTwo n] :
@[simp]
theorem Polynomial.eval_C {R : Type u} {a : R} [Semiring R] {x : R} :
Polynomial.eval x (Polynomial.C a) = a
@[simp]
theorem Polynomial.eval_nat_cast {R : Type u} [Semiring R] {x : R} {n : } :
Polynomial.eval x n = n
@[simp]
@[simp]
theorem Polynomial.eval_X {R : Type u} [Semiring R] {x : R} :
Polynomial.eval x Polynomial.X = x
@[simp]
theorem Polynomial.eval_monomial {R : Type u} [Semiring R] {x : R} {n : } {a : R} :
@[simp]
theorem Polynomial.eval_zero {R : Type u} [Semiring R] {x : R} :
@[simp]
theorem Polynomial.eval_add {R : Type u} [Semiring R] {p : Polynomial R} {q : Polynomial R} {x : R} :
@[simp]
theorem Polynomial.eval_one {R : Type u} [Semiring R] {x : R} :
@[simp]
theorem Polynomial.eval_bit0 {R : Type u} [Semiring R] {p : Polynomial R} {x : R} :
@[simp]
theorem Polynomial.eval_bit1 {R : Type u} [Semiring R] {p : Polynomial R} {x : R} :
@[simp]
theorem Polynomial.eval_smul {R : Type u} {S : Type v} [Semiring R] [Monoid S] [DistribMulAction S R] [IsScalarTower S R R] (s : S) (p : Polynomial R) (x : R) :
@[simp]
theorem Polynomial.eval_C_mul {R : Type u} {a : R} [Semiring R] {p : Polynomial R} {x : R} :
Polynomial.eval x (Polynomial.C a * p) = a * Polynomial.eval x p
theorem Polynomial.eval_monomial_one_add_sub {S : Type v} [CommRing S] (d : ) (y : S) :
Polynomial.eval (1 + y) ((Polynomial.monomial d) (d + 1)) - Polynomial.eval y ((Polynomial.monomial d) (d + 1)) = Finset.sum (Finset.range (d + 1)) fun (x_1 : ) => (Nat.choose (d + 1) x_1) * (x_1 * y ^ (x_1 - 1))

A reformulation of the expansion of (1 + y)^d: (d+1)(1+y)d(d+1)yd=i=0d(d+1i)iyi1.

@[simp]
theorem Polynomial.leval_apply {R : Type u_1} [Semiring R] (r : R) (f : Polynomial R) :
def Polynomial.leval {R : Type u_1} [Semiring R] (r : R) :

Polynomial.eval as linear map

Equations
@[simp]
theorem Polynomial.eval_nat_cast_mul {R : Type u} [Semiring R] {p : Polynomial R} {x : R} {n : } :
Polynomial.eval x (n * p) = n * Polynomial.eval x p
@[simp]
theorem Polynomial.eval_mul_X {R : Type u} [Semiring R] {p : Polynomial R} {x : R} :
Polynomial.eval x (p * Polynomial.X) = Polynomial.eval x p * x
@[simp]
theorem Polynomial.eval_mul_X_pow {R : Type u} [Semiring R] {p : Polynomial R} {x : R} {k : } :
Polynomial.eval x (p * Polynomial.X ^ k) = Polynomial.eval x p * x ^ k
theorem Polynomial.eval_sum {R : Type u} [Semiring R] (p : Polynomial R) (f : RPolynomial R) (x : R) :
Polynomial.eval x (Polynomial.sum p f) = Polynomial.sum p fun (n : ) (a : R) => Polynomial.eval x (f n a)
theorem Polynomial.eval_finset_sum {R : Type u} {ι : Type y} [Semiring R] (s : Finset ι) (g : ιPolynomial R) (x : R) :
Polynomial.eval x (Finset.sum s fun (i : ι) => g i) = Finset.sum s fun (i : ι) => Polynomial.eval x (g i)
def Polynomial.IsRoot {R : Type u} [Semiring R] (p : Polynomial R) (a : R) :

IsRoot p x implies x is a root of p. The evaluation of p at x is zero

Equations
Instances For
Equations
  • Polynomial.IsRoot.decidable = id inferInstance
@[simp]
theorem Polynomial.IsRoot.eq_zero {R : Type u} [Semiring R] {p : Polynomial R} {x : R} (h : Polynomial.IsRoot p x) :
theorem Polynomial.IsRoot.dvd {R : Type u_1} [CommSemiring R] {p : Polynomial R} {q : Polynomial R} {x : R} (h : Polynomial.IsRoot p x) (hpq : p q) :
theorem Polynomial.not_isRoot_C {R : Type u} [Semiring R] (r : R) (a : R) (hr : r 0) :
¬Polynomial.IsRoot (Polynomial.C r) a
def Polynomial.comp {R : Type u} [Semiring R] (p : Polynomial R) (q : Polynomial R) :

The composition of polynomials as a polynomial.

Equations
theorem Polynomial.comp_eq_sum_left {R : Type u} [Semiring R] {p : Polynomial R} {q : Polynomial R} :
Polynomial.comp p q = Polynomial.sum p fun (e : ) (a : R) => Polynomial.C a * q ^ e
@[simp]
theorem Polynomial.comp_X {R : Type u} [Semiring R] {p : Polynomial R} :
Polynomial.comp p Polynomial.X = p
@[simp]
theorem Polynomial.X_comp {R : Type u} [Semiring R] {p : Polynomial R} :
Polynomial.comp Polynomial.X p = p
@[simp]
theorem Polynomial.comp_C {R : Type u} {a : R} [Semiring R] {p : Polynomial R} :
Polynomial.comp p (Polynomial.C a) = Polynomial.C (Polynomial.eval a p)
@[simp]
theorem Polynomial.C_comp {R : Type u} {a : R} [Semiring R] {p : Polynomial R} :
Polynomial.comp (Polynomial.C a) p = Polynomial.C a
@[simp]
theorem Polynomial.nat_cast_comp {R : Type u} [Semiring R] {p : Polynomial R} {n : } :
Polynomial.comp (n) p = n
@[simp]
theorem Polynomial.ofNat_comp {R : Type u} [Semiring R] {p : Polynomial R} (n : ) [Nat.AtLeastTwo n] :
@[simp]
theorem Polynomial.comp_zero {R : Type u} [Semiring R] {p : Polynomial R} :
Polynomial.comp p 0 = Polynomial.C (Polynomial.eval 0 p)
@[simp]
theorem Polynomial.zero_comp {R : Type u} [Semiring R] {p : Polynomial R} :
@[simp]
theorem Polynomial.comp_one {R : Type u} [Semiring R] {p : Polynomial R} :
Polynomial.comp p 1 = Polynomial.C (Polynomial.eval 1 p)
@[simp]
theorem Polynomial.one_comp {R : Type u} [Semiring R] {p : Polynomial R} :
@[simp]
@[simp]
theorem Polynomial.monomial_comp {R : Type u} {a : R} [Semiring R] {p : Polynomial R} (n : ) :
Polynomial.comp ((Polynomial.monomial n) a) p = Polynomial.C a * p ^ n
@[simp]
theorem Polynomial.mul_X_comp {R : Type u} [Semiring R] {p : Polynomial R} {r : Polynomial R} :
Polynomial.comp (p * Polynomial.X) r = Polynomial.comp p r * r
@[simp]
theorem Polynomial.X_pow_comp {R : Type u} [Semiring R] {p : Polynomial R} {k : } :
Polynomial.comp (Polynomial.X ^ k) p = p ^ k
@[simp]
theorem Polynomial.mul_X_pow_comp {R : Type u} [Semiring R] {p : Polynomial R} {r : Polynomial R} {k : } :
Polynomial.comp (p * Polynomial.X ^ k) r = Polynomial.comp p r * r ^ k
@[simp]
theorem Polynomial.C_mul_comp {R : Type u} {a : R} [Semiring R] {p : Polynomial R} {r : Polynomial R} :
Polynomial.comp (Polynomial.C a * p) r = Polynomial.C a * Polynomial.comp p r
@[simp]
theorem Polynomial.nat_cast_mul_comp {R : Type u} [Semiring R] {p : Polynomial R} {r : Polynomial R} {n : } :
Polynomial.comp (n * p) r = n * Polynomial.comp p r
theorem Polynomial.mul_X_add_nat_cast_comp {R : Type u} [Semiring R] {p : Polynomial R} {q : Polynomial R} {n : } :
Polynomial.comp (p * (Polynomial.X + n)) q = Polynomial.comp p q * (q + n)
@[simp]
@[simp]
theorem Polynomial.pow_comp {R : Type u_1} [CommSemiring R] (p : Polynomial R) (q : Polynomial R) (n : ) :
@[simp]
@[simp]
@[simp]
theorem Polynomial.smul_comp {R : Type u} {S : Type v} [Semiring R] [Monoid S] [DistribMulAction S R] [IsScalarTower S R R] (s : S) (p : Polynomial R) (q : Polynomial R) :
@[simp]
theorem Polynomial.sum_comp {R : Type u} {ι : Type y} [Semiring R] (s : Finset ι) (p : ιPolynomial R) (q : Polynomial R) :
Polynomial.comp (Finset.sum s fun (i : ι) => p i) q = Finset.sum s fun (i : ι) => Polynomial.comp (p i) q
def Polynomial.map {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) :

map f p maps a polynomial p across a ring hom f

Equations
Instances For
@[simp]
theorem Polynomial.map_C {R : Type u} {S : Type v} {a : R} [Semiring R] [Semiring S] (f : R →+* S) :
Polynomial.map f (Polynomial.C a) = Polynomial.C (f a)
@[simp]
theorem Polynomial.map_X {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) :
Polynomial.map f Polynomial.X = Polynomial.X
@[simp]
theorem Polynomial.map_monomial {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) {n : } {a : R} :
@[simp]
theorem Polynomial.map_zero {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) :
@[simp]
theorem Polynomial.map_add {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} {q : Polynomial R} [Semiring S] (f : R →+* S) :
@[simp]
theorem Polynomial.map_one {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) :
@[simp]
theorem Polynomial.map_mul {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} {q : Polynomial R} [Semiring S] (f : R →+* S) :
@[simp]
theorem Polynomial.map_smul {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} [Semiring S] (f : R →+* S) (r : R) :
def Polynomial.mapRingHom {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) :

Polynomial.map as a RingHom.

Equations
@[simp]
theorem Polynomial.coe_mapRingHom {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) :
@[simp]
theorem Polynomial.map_nat_cast {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) (n : ) :
Polynomial.map f n = n
@[simp]
theorem Polynomial.map_ofNat {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) (n : ) [Nat.AtLeastTwo n] :
@[simp]
theorem Polynomial.map_bit0 {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} [Semiring S] (f : R →+* S) :
@[simp]
theorem Polynomial.map_bit1 {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} [Semiring S] (f : R →+* S) :
theorem Polynomial.map_dvd {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) {x : Polynomial R} {y : Polynomial R} :
@[simp]
theorem Polynomial.coeff_map {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} [Semiring S] (f : R →+* S) (n : ) :
@[simp]
theorem Polynomial.mapEquiv_apply {R : Type u} {S : Type v} [Semiring R] [Semiring S] (e : R ≃+* S) (a : Polynomial R) :
def Polynomial.mapEquiv {R : Type u} {S : Type v} [Semiring R] [Semiring S] (e : R ≃+* S) :

If R and S are isomorphic, then so are their polynomial rings.

Equations
theorem Polynomial.map_map {R : Type u} {S : Type v} {T : Type w} [Semiring R] [Semiring S] (f : R →+* S) [Semiring T] (g : S →+* T) (p : Polynomial R) :
@[simp]
theorem Polynomial.map_id {R : Type u} [Semiring R] {p : Polynomial R} :
def Polynomial.piEquiv {ι : Type u_2} [Finite ι] (R : ιType u_1) [(i : ι) → Semiring (R i)] :
Polynomial ((i : ι) → R i) ≃+* ((i : ι) → Polynomial (R i))

The polynomial ring over a finite product of rings is isomorphic to the product of polynomial rings over individual rings.

Equations
theorem Polynomial.eval₂_eq_eval_map {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} [Semiring S] (f : R →+* S) {x : S} :
theorem Polynomial.map_eq_zero_iff {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} [Semiring S] {f : R →+* S} (hf : Function.Injective f) :
Polynomial.map f p = 0 p = 0
theorem Polynomial.map_ne_zero_iff {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} [Semiring S] {f : R →+* S} (hf : Function.Injective f) :
theorem Polynomial.map_monic_eq_zero_iff {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} [Semiring S] {f : R →+* S} (hp : Polynomial.Monic p) :
Polynomial.map f p = 0 ∀ (x : R), f x = 0
theorem Polynomial.map_monic_ne_zero {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} [Semiring S] {f : R →+* S} (hp : Polynomial.Monic p) [Nontrivial S] :
@[simp]
theorem Polynomial.map_pow {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} [Semiring S] (f : R →+* S) (n : ) :
theorem Polynomial.mem_map_range {R : Type u_1} {S : Type u_2} [Ring R] [Ring S] (f : R →+* S) {p : Polynomial S} :
theorem Polynomial.eval₂_map {R : Type u} {S : Type v} {T : Type w} [Semiring R] {p : Polynomial R} [Semiring S] (f : R →+* S) [Semiring T] (g : S →+* T) (x : T) :
theorem Polynomial.eval_map {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} [Semiring S] (f : R →+* S) (x : S) :
theorem Polynomial.map_sum {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) {ι : Type u_1} (g : ιPolynomial R) (s : Finset ι) :
Polynomial.map f (Finset.sum s fun (i : ι) => g i) = Finset.sum s fun (i : ι) => Polynomial.map f (g i)
@[simp]
theorem Polynomial.eval_zero_map {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) (p : Polynomial R) :
@[simp]
theorem Polynomial.eval_one_map {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) (p : Polynomial R) :
@[simp]
theorem Polynomial.eval_nat_cast_map {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) (p : Polynomial R) (n : ) :
@[simp]
theorem Polynomial.eval_int_cast_map {R : Type u_1} {S : Type u_2} [Ring R] [Ring S] (f : R →+* S) (p : Polynomial R) (i : ) :

we have made eval₂ irreducible from the start.

Perhaps we can make also eval, comp, and map irreducible too?

theorem Polynomial.hom_eval₂ {R : Type u} {S : Type v} {T : Type w} [Semiring R] (p : Polynomial R) [Semiring S] [Semiring T] (f : R →+* S) (g : S →+* T) (x : S) :
theorem Polynomial.eval₂_hom {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} [Semiring S] (f : R →+* S) (x : R) :
@[simp]
theorem Polynomial.iterate_comp_eval₂ {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} {q : Polynomial R} [CommSemiring S] (f : R →+* S) (k : ) (t : S) :
@[simp]
theorem Polynomial.eval₂_mul' {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] (x : S) (p : Polynomial R) (q : Polynomial R) :
@[simp]
theorem Polynomial.eval₂_pow' {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] (x : S) (p : Polynomial R) (n : ) :
@[simp]
theorem Polynomial.eval_mul {R : Type u} [CommSemiring R] {p : Polynomial R} {q : Polynomial R} {x : R} :

eval r, regarded as a ring homomorphism from R[X] to R.

Equations
theorem Polynomial.evalRingHom_zero :
Polynomial.evalRingHom 0 = Polynomial.constantCoeff
@[simp]
theorem Polynomial.eval_pow {R : Type u} [CommSemiring R] {p : Polynomial R} {x : R} (n : ) :
@[simp]
theorem Polynomial.iterate_comp_eval {R : Type u} [CommSemiring R] {p : Polynomial R} {q : Polynomial R} (k : ) (t : R) :

comp p, regarded as a ring homomorphism from R[X] to itself.

Equations
theorem Polynomial.eval₂_finset_prod {R : Type u} {S : Type v} {ι : Type y} [CommSemiring R] [CommSemiring S] (f : R →+* S) (s : Finset ι) (g : ιPolynomial R) (x : S) :
Polynomial.eval₂ f x (Finset.prod s fun (i : ι) => g i) = Finset.prod s fun (i : ι) => Polynomial.eval₂ f x (g i)

Polynomial evaluation commutes with List.prod

theorem Polynomial.eval_prod {R : Type u} [CommSemiring R] {ι : Type u_1} (s : Finset ι) (p : ιPolynomial R) (x : R) :
Polynomial.eval x (Finset.prod s fun (j : ι) => p j) = Finset.prod s fun (j : ι) => Polynomial.eval x (p j)

Polynomial evaluation commutes with Finset.prod

theorem Polynomial.prod_comp {R : Type u} [CommSemiring R] {ι : Type u_1} (s : Finset ι) (p : ιPolynomial R) (q : Polynomial R) :
Polynomial.comp (Finset.prod s fun (j : ι) => p j) q = Finset.prod s fun (j : ι) => Polynomial.comp (p j) q
theorem Polynomial.isRoot_prod {R : Type u_2} [CommRing R] [IsDomain R] {ι : Type u_1} (s : Finset ι) (p : ιPolynomial R) (x : R) :
Polynomial.IsRoot (Finset.prod s fun (j : ι) => p j) x ∃ i ∈ s, Polynomial.IsRoot (p i) x
theorem Polynomial.eval_dvd {R : Type u} [CommSemiring R] {p : Polynomial R} {q : Polynomial R} {x : R} :
@[simp]
theorem Polynomial.eval_geom_sum {R : Type u_1} [CommSemiring R] {n : } {x : R} :
Polynomial.eval x (Finset.sum (Finset.range n) fun (i : ) => Polynomial.X ^ i) = Finset.sum (Finset.range n) fun (i : ) => x ^ i
theorem Polynomial.map_prod {R : Type u} {S : Type v} [CommSemiring R] [CommSemiring S] (f : R →+* S) {ι : Type u_1} (g : ιPolynomial R) (s : Finset ι) :
Polynomial.map f (Finset.prod s fun (i : ι) => g i) = Finset.prod s fun (i : ι) => Polynomial.map f (g i)
theorem Polynomial.IsRoot.map {R : Type u} {S : Type v} [CommSemiring R] [CommSemiring S] {f : R →+* S} {x : R} {p : Polynomial R} (h : Polynomial.IsRoot p x) :
theorem Polynomial.IsRoot.of_map {S : Type v} [CommSemiring S] {R : Type u_1} [CommRing R] {f : R →+* S} {x : R} {p : Polynomial R} (h : Polynomial.IsRoot (Polynomial.map f p) (f x)) (hf : Function.Injective f) :
theorem Polynomial.isRoot_map_iff {S : Type v} [CommSemiring S] {R : Type u_1} [CommRing R] {f : R →+* S} {x : R} {p : Polynomial R} (hf : Function.Injective f) :
@[simp]
theorem Polynomial.map_sub {R : Type u} [Ring R] {p : Polynomial R} {q : Polynomial R} {S : Type u_1} [Ring S] (f : R →+* S) :
@[simp]
theorem Polynomial.map_neg {R : Type u} [Ring R] {p : Polynomial R} {S : Type u_1} [Ring S] (f : R →+* S) :
@[simp]
theorem Polynomial.map_int_cast {R : Type u} [Ring R] {S : Type u_1} [Ring S] (f : R →+* S) (n : ) :
Polynomial.map f n = n
@[simp]
theorem Polynomial.eval_int_cast {R : Type u} [Ring R] {n : } {x : R} :
Polynomial.eval x n = n
@[simp]
theorem Polynomial.eval₂_neg {R : Type u} [Ring R] {p : Polynomial R} {S : Type u_1} [Ring S] (f : R →+* S) {x : S} :
@[simp]
theorem Polynomial.eval₂_sub {R : Type u} [Ring R] {p : Polynomial R} {q : Polynomial R} {S : Type u_1} [Ring S] (f : R →+* S) {x : S} :
@[simp]
theorem Polynomial.eval_neg {R : Type u} [Ring R] (p : Polynomial R) (x : R) :
@[simp]
theorem Polynomial.eval_sub {R : Type u} [Ring R] (p : Polynomial R) (q : Polynomial R) (x : R) :
theorem Polynomial.root_X_sub_C {R : Type u} {a : R} {b : R} [Ring R] :
Polynomial.IsRoot (Polynomial.X - Polynomial.C a) b a = b
@[simp]
theorem Polynomial.neg_comp {R : Type u} [Ring R] {p : Polynomial R} {q : Polynomial R} :
@[simp]
theorem Polynomial.sub_comp {R : Type u} [Ring R] {p : Polynomial R} {q : Polynomial R} {r : Polynomial R} :
@[simp]
theorem Polynomial.cast_int_comp {R : Type u} [Ring R] {p : Polynomial R} (i : ) :
Polynomial.comp (i) p = i
@[simp]
theorem Polynomial.eval₂_at_int_cast {R : Type u} [Ring R] {p : Polynomial R} {S : Type u_1} [Ring S] (f : R →+* S) (n : ) :
Polynomial.eval₂ f (n) p = f (Polynomial.eval (n) p)
theorem Polynomial.mul_X_sub_int_cast_comp {R : Type u} [Ring R] {p : Polynomial R} {q : Polynomial R} {n : } :
Polynomial.comp (p * (Polynomial.X - n)) q = Polynomial.comp p q * (q - n)