Lemmas about images of intervals under order isomorphisms. #
@[simp]
theorem
OrderIso.preimage_Icc
{α : Type u_2}
{β : Type u_1}
[Preorder α]
[Preorder β]
(e : α ≃o β)
(a : β)
(b : β)
:
⇑e ⁻¹' Set.Icc a b = Set.Icc ((OrderIso.symm e) a) ((OrderIso.symm e) b)
@[simp]
theorem
OrderIso.preimage_Ico
{α : Type u_2}
{β : Type u_1}
[Preorder α]
[Preorder β]
(e : α ≃o β)
(a : β)
(b : β)
:
⇑e ⁻¹' Set.Ico a b = Set.Ico ((OrderIso.symm e) a) ((OrderIso.symm e) b)
@[simp]
theorem
OrderIso.preimage_Ioc
{α : Type u_2}
{β : Type u_1}
[Preorder α]
[Preorder β]
(e : α ≃o β)
(a : β)
(b : β)
:
⇑e ⁻¹' Set.Ioc a b = Set.Ioc ((OrderIso.symm e) a) ((OrderIso.symm e) b)
@[simp]
theorem
OrderIso.preimage_Ioo
{α : Type u_2}
{β : Type u_1}
[Preorder α]
[Preorder β]
(e : α ≃o β)
(a : β)
(b : β)
:
⇑e ⁻¹' Set.Ioo a b = Set.Ioo ((OrderIso.symm e) a) ((OrderIso.symm e) b)
Order isomorphism between Iic (⊤ : α)
and α
when α
has a top element
Equations
- OrderIso.IicTop = let __src := Equiv.subtypeUnivEquiv ⋯; { toEquiv := __src, map_rel_iff' := ⋯ }
Instances For
Order isomorphism between Ici (⊥ : α)
and α
when α
has a bottom element
Equations
- OrderIso.IciBot = let __src := Equiv.subtypeUnivEquiv ⋯; { toEquiv := __src, map_rel_iff' := ⋯ }