Intervals in Lattices #
In this file, we provide instances of lattice structures on intervals within lattices. Some of them depend on the order of the endpoints of the interval, and thus are not made global instances. These are probably not all of the lattice instances that could be placed on these intervals, but more can be added easily along the same lines when needed.
Main definitions #
In the following, *
can represent either c
, o
, or i
.
Set.Ic*.orderBot
Set.Ii*.semillaticeInf
Set.I*c.orderTop
Set.I*c.semillaticeInf
Set.I**.lattice
Set.Iic.boundedOrder
, within anOrderBot
Set.Ici.boundedOrder
, within anOrderTop
instance
Set.Ico.semilatticeInf
{α : Type u_1}
[SemilatticeInf α]
{a : α}
{b : α}
:
SemilatticeInf ↑(Set.Ico a b)
Equations
- Set.Ico.semilatticeInf = Subtype.semilatticeInf ⋯
@[reducible]
Ico a b
has a bottom element whenever a < b
.
Equations
Instances For
instance
Set.Iio.semilatticeInf
{α : Type u_1}
[SemilatticeInf α]
{a : α}
:
SemilatticeInf ↑(Set.Iio a)
Equations
- Set.Iio.semilatticeInf = Subtype.semilatticeInf ⋯
instance
Set.Ioc.semilatticeSup
{α : Type u_1}
[SemilatticeSup α]
{a : α}
{b : α}
:
SemilatticeSup ↑(Set.Ioc a b)
Equations
- Set.Ioc.semilatticeSup = Subtype.semilatticeSup ⋯
@[reducible]
Ioc a b
has a top element whenever a < b
.
Equations
Instances For
instance
Set.Ioi.semilatticeSup
{α : Type u_1}
[SemilatticeSup α]
{a : α}
:
SemilatticeSup ↑(Set.Ioi a)
Equations
- Set.Ioi.semilatticeSup = Subtype.semilatticeSup ⋯
instance
Set.Iic.semilatticeInf
{α : Type u_1}
[SemilatticeInf α]
{a : α}
:
SemilatticeInf ↑(Set.Iic a)
Equations
- Set.Iic.semilatticeInf = Subtype.semilatticeInf ⋯
instance
Set.Iic.semilatticeSup
{α : Type u_1}
[SemilatticeSup α]
{a : α}
:
SemilatticeSup ↑(Set.Iic a)
Equations
- Set.Iic.semilatticeSup = Subtype.semilatticeSup ⋯
instance
Set.Iic.instLatticeElemIicToPreorderToPartialOrderToSemilatticeInf
{α : Type u_1}
[Lattice α]
{a : α}
:
Equations
- Set.Iic.instLatticeElemIicToPreorderToPartialOrderToSemilatticeInf = let __src := Set.Iic.semilatticeInf; let __src_1 := Set.Iic.semilatticeSup; Lattice.mk ⋯ ⋯ ⋯
Equations
- Set.Iic.orderTop = OrderTop.mk ⋯
Equations
- Set.Iic.orderBot = OrderBot.mk ⋯
instance
Set.Iic.instBoundedOrderElemIicLeToLEMemSetInstMembershipSet
{α : Type u_1}
[Preorder α]
[OrderBot α]
{a : α}
:
BoundedOrder ↑(Set.Iic a)
Equations
- Set.Iic.instBoundedOrderElemIicLeToLEMemSetInstMembershipSet = let __src := Set.Iic.orderTop; let __src_1 := Set.Iic.orderBot; BoundedOrder.mk
instance
Set.Ici.semilatticeInf
{α : Type u_1}
[SemilatticeInf α]
{a : α}
:
SemilatticeInf ↑(Set.Ici a)
Equations
- Set.Ici.semilatticeInf = Subtype.semilatticeInf ⋯
instance
Set.Ici.semilatticeSup
{α : Type u_1}
[SemilatticeSup α]
{a : α}
:
SemilatticeSup ↑(Set.Ici a)
Equations
- Set.Ici.semilatticeSup = Subtype.semilatticeSup ⋯
Equations
- Set.Ici.lattice = let __src := Set.Ici.semilatticeInf; let __src_1 := Set.Ici.semilatticeSup; Lattice.mk ⋯ ⋯ ⋯
instance
Set.Ici.distribLattice
{α : Type u_1}
[DistribLattice α]
{a : α}
:
DistribLattice ↑(Set.Ici a)
Equations
- Set.Ici.distribLattice = let __src := Set.Ici.lattice; DistribLattice.mk ⋯
Equations
- Set.Ici.orderBot = OrderBot.mk ⋯
Equations
- Set.Ici.orderTop = OrderTop.mk ⋯
instance
Set.Ici.boundedOrder
{α : Type u_1}
[Preorder α]
[OrderTop α]
{a : α}
:
BoundedOrder ↑(Set.Ici a)
Equations
- Set.Ici.boundedOrder = let __src := Set.Ici.orderTop; let __src_1 := Set.Ici.orderBot; BoundedOrder.mk
instance
Set.Icc.semilatticeInf
{α : Type u_1}
[SemilatticeInf α]
{a : α}
{b : α}
:
SemilatticeInf ↑(Set.Icc a b)
Equations
- Set.Icc.semilatticeInf = Subtype.semilatticeInf ⋯
instance
Set.Icc.semilatticeSup
{α : Type u_1}
[SemilatticeSup α]
{a : α}
{b : α}
:
SemilatticeSup ↑(Set.Icc a b)
Equations
- Set.Icc.semilatticeSup = Subtype.semilatticeSup ⋯
Equations
- Set.Icc.lattice = let __src := Set.Icc.semilatticeInf; let __src_1 := Set.Icc.semilatticeSup; Lattice.mk ⋯ ⋯ ⋯
@[reducible]
Icc a b
has a bottom element whenever a ≤ b
.
Equations
Instances For
@[reducible]
Icc a b
has a top element whenever a ≤ b
.
Equations
Instances For
@[reducible]
def
Set.Icc.boundedOrder
{α : Type u_1}
[Preorder α]
{a : α}
{b : α}
(h : a ≤ b)
:
BoundedOrder ↑(Set.Icc a b)
Icc a b
is a BoundedOrder
whenever a ≤ b
.
Equations
- Set.Icc.boundedOrder h = let __src := Set.Icc.orderTop h; let __src_1 := Set.Icc.orderBot h; BoundedOrder.mk