Documentation

Mathlib.RingTheory.Ideal.Basic

Ideals over a ring #

This file defines Ideal R, the type of (left) ideals over a ring R. Note that over commutative rings, left ideals and two-sided ideals are equivalent.

Implementation notes #

Ideal R is implemented using Submodule R R, where is interpreted as *.

TODO #

Support right ideals, and two-sided ideals over non-commutative rings.

A ring is a principal ideal ring if all (left) ideals are principal.

Instances
theorem Ideal.zero_mem {α : Type u} [Semiring α] (I : Ideal α) :
0 I
theorem Ideal.add_mem {α : Type u} [Semiring α] (I : Ideal α) {a : α} {b : α} :
a Ib Ia + b I
theorem Ideal.mul_mem_left {α : Type u} [Semiring α] (I : Ideal α) (a : α) {b : α} :
b Ia * b I
theorem Ideal.ext {α : Type u} [Semiring α] {I : Ideal α} {J : Ideal α} (h : ∀ (x : α), x I x J) :
I = J
theorem Ideal.sum_mem {α : Type u} [Semiring α] (I : Ideal α) {ι : Type u_1} {t : Finset ι} {f : ια} :
(ct, f c I)(Finset.sum t fun (i : ι) => f i) I
theorem Ideal.eq_top_of_unit_mem {α : Type u} [Semiring α] (I : Ideal α) (x : α) (y : α) (hx : x I) (h : y * x = 1) :
I =
theorem Ideal.eq_top_of_isUnit_mem {α : Type u} [Semiring α] (I : Ideal α) {x : α} (hx : x I) (h : IsUnit x) :
I =
theorem Ideal.eq_top_iff_one {α : Type u} [Semiring α] (I : Ideal α) :
I = 1 I
theorem Ideal.ne_top_iff_one {α : Type u} [Semiring α] (I : Ideal α) :
I 1I
@[simp]
theorem Ideal.unit_mul_mem_iff_mem {α : Type u} [Semiring α] (I : Ideal α) {x : α} {y : α} (hy : IsUnit y) :
y * x I x I
def Ideal.span {α : Type u} [Semiring α] (s : Set α) :

The ideal generated by a subset of a ring

Equations
Instances For
@[simp]
theorem Ideal.submodule_span_eq {α : Type u} [Semiring α] {s : Set α} :
@[simp]
@[simp]
theorem Ideal.span_univ {α : Type u} [Semiring α] :
Ideal.span Set.univ =
theorem Ideal.span_union {α : Type u} [Semiring α] (s : Set α) (t : Set α) :
theorem Ideal.span_iUnion {α : Type u} [Semiring α] {ι : Sort u_1} (s : ιSet α) :
Ideal.span (⋃ (i : ι), s i) = ⨆ (i : ι), Ideal.span (s i)
theorem Ideal.mem_span {α : Type u} [Semiring α] {s : Set α} (x : α) :
x Ideal.span s ∀ (p : Ideal α), s px p
theorem Ideal.subset_span {α : Type u} [Semiring α] {s : Set α} :
s (Ideal.span s)
theorem Ideal.span_le {α : Type u} [Semiring α] {s : Set α} {I : Ideal α} :
Ideal.span s I s I
theorem Ideal.span_mono {α : Type u} [Semiring α] {s : Set α} {t : Set α} :
@[simp]
theorem Ideal.span_eq {α : Type u} [Semiring α] (I : Ideal α) :
Ideal.span I = I
@[simp]
theorem Ideal.mem_span_insert {α : Type u} [Semiring α] {s : Set α} {x : α} {y : α} :
x Ideal.span (insert y s) ∃ (a : α), ∃ z ∈ Ideal.span s, x = a * y + z
theorem Ideal.mem_span_singleton' {α : Type u} [Semiring α] {x : α} {y : α} :
x Ideal.span {y} ∃ (a : α), a * y = x
theorem Ideal.span_singleton_le_iff_mem {α : Type u} [Semiring α] (I : Ideal α) {x : α} :
Ideal.span {x} I x I
theorem Ideal.span_singleton_mul_left_unit {α : Type u} [Semiring α] {a : α} (h2 : IsUnit a) (x : α) :
theorem Ideal.span_insert {α : Type u} [Semiring α] (x : α) (s : Set α) :
theorem Ideal.span_eq_bot {α : Type u} [Semiring α] {s : Set α} :
Ideal.span s = xs, x = 0
@[simp]
theorem Ideal.span_singleton_eq_bot {α : Type u} [Semiring α] {x : α} :
Ideal.span {x} = x = 0
theorem Ideal.span_singleton_ne_top {α : Type u_1} [CommSemiring α] {x : α} (hx : ¬IsUnit x) :
@[simp]
theorem Ideal.span_zero {α : Type u} [Semiring α] :
@[simp]
theorem Ideal.span_one {α : Type u} [Semiring α] :
theorem Ideal.span_eq_top_iff_finite {α : Type u} [Semiring α] (s : Set α) :
Ideal.span s = ∃ (s' : Finset α), s' s Ideal.span s' =
theorem Ideal.mem_span_singleton_sup {S : Type u_1} [CommSemiring S] {x : S} {y : S} {I : Ideal S} :
x Ideal.span {y} I ∃ (a : S), ∃ b ∈ I, a * y + b = x
def Ideal.ofRel {α : Type u} [Semiring α] (r : ααProp) :

The ideal generated by an arbitrary binary relation.

Equations
class Ideal.IsPrime {α : Type u} [Semiring α] (I : Ideal α) :

An ideal P of a ring R is prime if P ≠ R and xy ∈ P → x ∈ P ∨ y ∈ P

  • ne_top' : I

    The prime ideal is not the entire ring.

  • mem_or_mem' : ∀ {x y : α}, x * y Ix I y I

    If a product lies in the prime ideal, then at least one element lies in the prime ideal.

Instances
theorem Ideal.isPrime_iff {α : Type u} [Semiring α] {I : Ideal α} :
Ideal.IsPrime I I ∀ {x y : α}, x * y Ix I y I
theorem Ideal.IsPrime.ne_top {α : Type u} [Semiring α] {I : Ideal α} (hI : Ideal.IsPrime I) :
theorem Ideal.IsPrime.mem_or_mem {α : Type u} [Semiring α] {I : Ideal α} (hI : Ideal.IsPrime I) {x : α} {y : α} :
x * y Ix I y I
theorem Ideal.IsPrime.mem_or_mem_of_mul_eq_zero {α : Type u} [Semiring α] {I : Ideal α} (hI : Ideal.IsPrime I) {x : α} {y : α} (h : x * y = 0) :
x I y I
theorem Ideal.IsPrime.mem_of_pow_mem {α : Type u} [Semiring α] {I : Ideal α} (hI : Ideal.IsPrime I) {r : α} (n : ) (H : r ^ n I) :
r I
theorem Ideal.not_isPrime_iff {α : Type u} [Semiring α] {I : Ideal α} :
¬Ideal.IsPrime I I = ∃ (x : α) (_ : xI) (y : α) (_ : yI), x * y I
theorem Ideal.zero_ne_one_of_proper {α : Type u} [Semiring α] {I : Ideal α} (h : I ) :
0 1
class Ideal.IsMaximal {α : Type u} [Semiring α] (I : Ideal α) :

An ideal is maximal if it is maximal in the collection of proper ideals.

  • out : IsCoatom I

    The maximal ideal is a coatom in the ordering on ideals; that is, it is not the entire ring, and there are no other proper ideals strictly containing it.

Instances
theorem Ideal.IsMaximal.ne_top {α : Type u} [Semiring α] {I : Ideal α} (h : Ideal.IsMaximal I) :
theorem Ideal.isMaximal_iff {α : Type u} [Semiring α] {I : Ideal α} :
Ideal.IsMaximal I 1I ∀ (J : Ideal α) (x : α), I JxIx J1 J
theorem Ideal.IsMaximal.eq_of_le {α : Type u} [Semiring α] {I : Ideal α} {J : Ideal α} (hI : Ideal.IsMaximal I) (hJ : J ) (IJ : I J) :
I = J
theorem Ideal.IsMaximal.coprime_of_ne {α : Type u} [Semiring α] {M : Ideal α} {M' : Ideal α} (hM : Ideal.IsMaximal M) (hM' : Ideal.IsMaximal M') (hne : M M') :
M M' =
theorem Ideal.exists_le_maximal {α : Type u} [Semiring α] (I : Ideal α) (hI : I ) :
∃ (M : Ideal α), Ideal.IsMaximal M I M

Krull's theorem: if I is an ideal that is not the whole ring, then it is included in some maximal ideal.

theorem Ideal.exists_maximal (α : Type u) [Semiring α] [Nontrivial α] :
∃ (M : Ideal α), Ideal.IsMaximal M

Krull's theorem: a nontrivial ring has a maximal ideal.

Equations
  • =
theorem Ideal.maximal_of_no_maximal {α : Type u} [Semiring α] {P : Ideal α} (hmax : ∀ (m : Ideal α), P < m¬Ideal.IsMaximal m) (J : Ideal α) (hPJ : P < J) :
J =

If P is not properly contained in any maximal ideal then it is not properly contained in any proper ideal

theorem Ideal.span_pair_comm {α : Type u} [Semiring α] {x : α} {y : α} :
Ideal.span {x, y} = Ideal.span {y, x}
theorem Ideal.mem_span_pair {α : Type u} [Semiring α] {x : α} {y : α} {z : α} :
z Ideal.span {x, y} ∃ (a : α) (b : α), a * x + b * y = z
@[simp]
theorem Ideal.span_pair_add_mul_left {R : Type u} [CommRing R] {x : R} {y : R} (z : R) :
Ideal.span {x + y * z, y} = Ideal.span {x, y}
@[simp]
theorem Ideal.span_pair_add_mul_right {R : Type u} [CommRing R] {x : R} {y : R} (z : R) :
Ideal.span {x, y + x * z} = Ideal.span {x, y}
theorem Ideal.IsMaximal.exists_inv {α : Type u} [Semiring α] {I : Ideal α} (hI : Ideal.IsMaximal I) {x : α} (hx : xI) :
∃ (y : α), ∃ i ∈ I, y * x + i = 1
theorem Ideal.mem_sup_left {R : Type u} [Semiring R] {S : Ideal R} {T : Ideal R} {x : R} :
x Sx S T
theorem Ideal.mem_sup_right {R : Type u} [Semiring R] {S : Ideal R} {T : Ideal R} {x : R} :
x Tx S T
theorem Ideal.mem_iSup_of_mem {R : Type u} [Semiring R] {ι : Sort u_1} {S : ιIdeal R} (i : ι) {x : R} :
x S ix iSup S
theorem Ideal.mem_sSup_of_mem {R : Type u} [Semiring R] {S : Set (Ideal R)} {s : Ideal R} (hs : s S) {x : R} :
x sx sSup S
theorem Ideal.mem_sInf {R : Type u} [Semiring R] {s : Set (Ideal R)} {x : R} :
x sInf s ∀ ⦃I : Ideal R⦄, I sx I
@[simp]
theorem Ideal.mem_inf {R : Type u} [Semiring R] {I : Ideal R} {J : Ideal R} {x : R} :
x I J x I x J
@[simp]
theorem Ideal.mem_iInf {R : Type u} [Semiring R] {ι : Sort u_1} {I : ιIdeal R} {x : R} :
x iInf I ∀ (i : ι), x I i
@[simp]
theorem Ideal.mem_bot {R : Type u} [Semiring R] {x : R} :
x x = 0
def Ideal.pi {α : Type u} [Semiring α] (I : Ideal α) (ι : Type v) :
Ideal (ια)

I^n as an ideal of R^n.

Equations
  • Ideal.pi I ι = { toAddSubmonoid := { toAddSubsemigroup := { carrier := {x : ια | ∀ (i : ι), x i I}, add_mem' := }, zero_mem' := }, smul_mem' := }
theorem Ideal.mem_pi {α : Type u} [Semiring α] (I : Ideal α) (ι : Type v) (x : ια) :
x Ideal.pi I ι ∀ (i : ι), x i I
theorem Ideal.sInf_isPrime_of_isChain {α : Type u} [Semiring α] {s : Set (Ideal α)} (hs : Set.Nonempty s) (hs' : IsChain (fun (x x_1 : Ideal α) => x x_1) s) (H : ps, Ideal.IsPrime p) :
@[simp]
theorem Ideal.mul_unit_mem_iff_mem {α : Type u} [CommSemiring α] (I : Ideal α) {x : α} {y : α} (hy : IsUnit y) :
x * y I x I
theorem Ideal.mem_span_singleton {α : Type u} [CommSemiring α] {x : α} {y : α} :
x Ideal.span {y} y x
theorem Ideal.span_singleton_le_span_singleton {α : Type u} [CommSemiring α] {x : α} {y : α} :
theorem Ideal.span_singleton_eq_span_singleton {α : Type u} [CommRing α] [IsDomain α] {x : α} {y : α} :
theorem Ideal.span_singleton_mul_right_unit {α : Type u} [CommSemiring α] {a : α} (h2 : IsUnit a) (x : α) :
@[simp]
theorem Ideal.span_singleton_eq_top {α : Type u} [CommSemiring α] {x : α} :
theorem Ideal.span_singleton_prime {α : Type u} [CommSemiring α] {p : α} (hp : p 0) :
instance Ideal.IsMaximal.isPrime' {α : Type u} [CommSemiring α] (I : Ideal α) [_H : Ideal.IsMaximal I] :
Equations
  • =
theorem Ideal.factors_decreasing {α : Type u} [CommSemiring α] [IsDomain α] (b₁ : α) (b₂ : α) (h₁ : b₁ 0) (h₂ : ¬IsUnit b₂) :
Ideal.span {b₁ * b₂} < Ideal.span {b₁}
theorem Ideal.mul_mem_right {α : Type u} {a : α} (b : α) [CommSemiring α] (I : Ideal α) (h : a I) :
a * b I
theorem Ideal.pow_mem_of_mem {α : Type u} {a : α} [CommSemiring α] (I : Ideal α) (ha : a I) (n : ) (hn : 0 < n) :
a ^ n I
theorem Ideal.IsPrime.mul_mem_iff_mem_or_mem {α : Type u} [CommSemiring α] {I : Ideal α} (hI : Ideal.IsPrime I) {x : α} {y : α} :
x * y I x I y I
theorem Ideal.IsPrime.pow_mem_iff_mem {α : Type u} [CommSemiring α] {I : Ideal α} (hI : Ideal.IsPrime I) {r : α} (n : ) (hn : 0 < n) :
r ^ n I r I
theorem Ideal.pow_multiset_sum_mem_span_pow {α : Type u} [CommSemiring α] [DecidableEq α] (s : Multiset α) (n : ) :
Multiset.sum s ^ (Multiset.card s * n + 1) Ideal.span (Multiset.toFinset (Multiset.map (fun (x : α) => x ^ (n + 1)) s))
theorem Ideal.sum_pow_mem_span_pow {α : Type u} [CommSemiring α] {ι : Type u_1} (s : Finset ι) (f : ια) (n : ) :
(Finset.sum s fun (i : ι) => f i) ^ (s.card * n + 1) Ideal.span ((fun (i : ι) => f i ^ (n + 1)) '' s)
theorem Ideal.span_pow_eq_top {α : Type u} [CommSemiring α] (s : Set α) (hs : Ideal.span s = ) (n : ) :
Ideal.span ((fun (x : α) => x ^ n) '' s) =
theorem Ideal.isPrime_of_maximally_disjoint {α : Type u} [CommSemiring α] (I : Ideal α) (S : Submonoid α) (disjoint : Disjoint I S) (maximally_disjoint : ∀ (J : Ideal α), I < J¬Disjoint J S) :
theorem Ideal.neg_mem_iff {α : Type u} [Ring α] (I : Ideal α) {a : α} :
-a I a I
theorem Ideal.add_mem_iff_left {α : Type u} [Ring α] (I : Ideal α) {a : α} {b : α} :
b I(a + b I a I)
theorem Ideal.add_mem_iff_right {α : Type u} [Ring α] (I : Ideal α) {a : α} {b : α} :
a I(a + b I b I)
theorem Ideal.sub_mem {α : Type u} [Ring α] (I : Ideal α) {a : α} {b : α} :
a Ib Ia - b I
theorem Ideal.mem_span_insert' {α : Type u} [Ring α] {s : Set α} {x : α} {y : α} :
x Ideal.span (insert y s) ∃ (a : α), x + a * y Ideal.span s
@[simp]
theorem Ideal.span_singleton_neg {α : Type u} [Ring α] (x : α) :
theorem Ideal.eq_bot_or_top {K : Type u} [DivisionSemiring K] (I : Ideal K) :
I = I =

All ideals in a division (semi)ring are trivial.

A bijection between between (left) ideals of a division ring and {0, 1}, sending to 0 and to 1.

Equations
Equations
  • =

Ideals of a DivisionSemiring are a simple order. Thanks to the way abbreviations work, this automatically gives an IsSimpleModule K instance.

Equations
  • =
theorem Ideal.mul_sub_mul_mem {R : Type u_1} [CommRing R] (I : Ideal R) {a : R} {b : R} {c : R} {d : R} (h1 : a - b I) (h2 : c - d I) :
a * c - b * d I
theorem Ring.exists_not_isUnit_of_not_isField {R : Type u_1} [CommSemiring R] [Nontrivial R] (hf : ¬IsField R) :
∃ (x : R) (_ : x 0), ¬IsUnit x

Also see Ideal.isSimpleOrder for the forward direction as an instance when R is a division (semi)ring.

This result actually holds for all division semirings, but we lack the predicate to state it.

theorem Ring.ne_bot_of_isMaximal_of_not_isField {R : Type u_1} [CommSemiring R] [Nontrivial R] {M : Ideal R} (max : Ideal.IsMaximal M) (not_field : ¬IsField R) :

When a ring is not a field, the maximal ideals are nontrivial.

theorem Ideal.bot_lt_of_maximal {R : Type u} [CommSemiring R] [Nontrivial R] (M : Ideal R) [hm : Ideal.IsMaximal M] (non_field : ¬IsField R) :
< M
def nonunits (α : Type u) [Monoid α] :
Set α

The set of non-invertible elements of a monoid.

Equations
@[simp]
theorem mem_nonunits_iff {α : Type u} {a : α} [Monoid α] :
theorem mul_mem_nonunits_right {α : Type u} {a : α} {b : α} [CommMonoid α] :
b nonunits αa * b nonunits α
theorem mul_mem_nonunits_left {α : Type u} {a : α} {b : α} [CommMonoid α] :
a nonunits αa * b nonunits α
theorem zero_mem_nonunits {α : Type u} [Semiring α] :
0 nonunits α 0 1
@[simp]
theorem one_not_mem_nonunits {α : Type u} [Monoid α] :
1nonunits α
theorem coe_subset_nonunits {α : Type u} [Semiring α] {I : Ideal α} (h : I ) :
I nonunits α
theorem exists_max_ideal_of_mem_nonunits {α : Type u} {a : α} [CommSemiring α] (h : a nonunits α) :
∃ (I : Ideal α), Ideal.IsMaximal I a I