Documentation

Mathlib.SetTheory.Ordinal.FixedPoint

Fixed points of normal functions #

We prove various statements about the fixed points of normal ordinal functions. We state them in three forms: as statements about type-indexed families of normal functions, as statements about ordinal-indexed families of normal functions, and as statements about a single normal function. For the most part, the first case encompasses the others.

Moreover, we prove some lemmas about the fixed points of specific normal functions.

Main definitions and results #

Fixed points of type-indexed families of ordinals #

The next common fixed point, at least a, for a family of normal functions.

This is defined for any family of functions, as the supremum of all values reachable by applying finitely many functions in the family to a.

Ordinal.nfpFamily_fp shows this is a fixed point, Ordinal.le_nfpFamily shows it's at least a, and Ordinal.nfpFamily_le_fp shows this is the least ordinal with these properties.

Equations
theorem Ordinal.nfpFamily_le {ι : Type u} {f : ιOrdinal.{max u v}Ordinal.{max u v} } {a : Ordinal.{max u v} } {b : Ordinal.{max u v} } :
(∀ (l : List ι), List.foldr f a l b)Ordinal.nfpFamily f a b
theorem Ordinal.nfpFamily_monotone {ι : Type u} {f : ιOrdinal.{max u v}Ordinal.{max u v} } (hf : ∀ (i : ι), Monotone (f i)) :
theorem Ordinal.apply_lt_nfpFamily {ι : Type u} {f : ιOrdinal.{max u v}Ordinal.{max u v} } (H : ∀ (i : ι), Ordinal.IsNormal (f i)) {a : Ordinal.{max u v} } {b : Ordinal.{max v u} } (hb : b < Ordinal.nfpFamily f a) (i : ι) :
theorem Ordinal.apply_lt_nfpFamily_iff {ι : Type u} {f : ιOrdinal.{max u v}Ordinal.{max u v} } [Nonempty ι] (H : ∀ (i : ι), Ordinal.IsNormal (f i)) {a : Ordinal.{max u v} } {b : Ordinal.{max u v} } :
(∀ (i : ι), f i b < Ordinal.nfpFamily f a) b < Ordinal.nfpFamily f a
theorem Ordinal.nfpFamily_le_apply {ι : Type u} {f : ιOrdinal.{max u v}Ordinal.{max u v} } [Nonempty ι] (H : ∀ (i : ι), Ordinal.IsNormal (f i)) {a : Ordinal.{max u v} } {b : Ordinal.{max u v} } :
(∃ (i : ι), Ordinal.nfpFamily f a f i b) Ordinal.nfpFamily f a b
theorem Ordinal.nfpFamily_le_fp {ι : Type u} {f : ιOrdinal.{max u v}Ordinal.{max u v} } (H : ∀ (i : ι), Monotone (f i)) {a : Ordinal.{max u v} } {b : Ordinal.{max u v} } (ab : a b) (h : ∀ (i : ι), f i b b) :
theorem Ordinal.apply_le_nfpFamily {ι : Type u} [hι : Nonempty ι] {f : ιOrdinal.{max u v}Ordinal.{max u v} } (H : ∀ (i : ι), Ordinal.IsNormal (f i)) {a : Ordinal.{max u v} } {b : Ordinal.{max u v} } :
(∀ (i : ι), f i b Ordinal.nfpFamily f a) b Ordinal.nfpFamily f a
theorem Ordinal.nfpFamily_eq_self {ι : Type u} {f : ιOrdinal.{max u u_1}Ordinal.{max u u_1} } {a : Ordinal.{max u u_1} } (h : ∀ (i : ι), f i a = a) :
theorem Ordinal.fp_family_unbounded {ι : Type u} {f : ιOrdinal.{max u v}Ordinal.{max u v} } (H : ∀ (i : ι), Ordinal.IsNormal (f i)) :
Set.Unbounded (fun (x x_1 : Ordinal.{max u v} ) => x < x_1) (⋂ (i : ι), Function.fixedPoints (f i))

A generalization of the fixed point lemma for normal functions: any family of normal functions has an unbounded set of common fixed points.

The derivative of a family of normal functions is the sequence of their common fixed points.

This is defined for all functions such that Ordinal.derivFamily_zero, Ordinal.derivFamily_succ, and Ordinal.derivFamily_limit are satisfied.

Equations
  • One or more equations did not get rendered due to their size.
theorem Ordinal.le_iff_derivFamily {ι : Type u} {f : ιOrdinal.{max u v}Ordinal.{max u v} } (H : ∀ (i : ι), Ordinal.IsNormal (f i)) {a : Ordinal.{max u v} } :
(∀ (i : ι), f i a a) ∃ (o : Ordinal.{max u v} ), Ordinal.derivFamily f o = a
theorem Ordinal.fp_iff_derivFamily {ι : Type u} {f : ιOrdinal.{max u v}Ordinal.{max u v} } (H : ∀ (i : ι), Ordinal.IsNormal (f i)) {a : Ordinal.{max u v} } :
(∀ (i : ι), f i a = a) ∃ (o : Ordinal.{max u v} ), Ordinal.derivFamily f o = a
theorem Ordinal.derivFamily_eq_enumOrd {ι : Type u} {f : ιOrdinal.{max u v}Ordinal.{max u v} } (H : ∀ (i : ι), Ordinal.IsNormal (f i)) :

For a family of normal functions, Ordinal.derivFamily enumerates the common fixed points.

Fixed points of ordinal-indexed families of ordinals #

The next common fixed point, at least a, for a family of normal functions indexed by ordinals.

This is defined as Ordinal.nfpFamily of the type-indexed family associated to f.

Equations
theorem Ordinal.nfpBFamily_monotone {o : Ordinal.{u}} {f : (b : Ordinal.{u}) → b < oOrdinal.{max u v}Ordinal.{max u v} } (hf : ∀ (i : Ordinal.{u}) (hi : i < o), Monotone (f i hi)) :
theorem Ordinal.apply_lt_nfpBFamily {o : Ordinal.{u}} {f : (b : Ordinal.{u}) → b < oOrdinal.{max u v}Ordinal.{max u v} } (H : ∀ (i : Ordinal.{u}) (hi : i < o), Ordinal.IsNormal (f i hi)) {a : Ordinal.{max v u} } {b : Ordinal.{max v u} } (hb : b < Ordinal.nfpBFamily o f a) (i : Ordinal.{u}) (hi : i < o) :
f i hi b < Ordinal.nfpBFamily o f a
theorem Ordinal.apply_lt_nfpBFamily_iff {o : Ordinal.{u}} {f : (b : Ordinal.{u}) → b < oOrdinal.{max u v}Ordinal.{max u v} } (ho : o 0) (H : ∀ (i : Ordinal.{u}) (hi : i < o), Ordinal.IsNormal (f i hi)) {a : Ordinal.{max v u} } {b : Ordinal.{max u v} } :
(∀ (i : Ordinal.{u}) (hi : i < o), f i hi b < Ordinal.nfpBFamily o f a) b < Ordinal.nfpBFamily o f a
theorem Ordinal.nfpBFamily_le_apply {o : Ordinal.{u}} {f : (b : Ordinal.{u}) → b < oOrdinal.{max u v}Ordinal.{max u v} } (ho : o 0) (H : ∀ (i : Ordinal.{u}) (hi : i < o), Ordinal.IsNormal (f i hi)) {a : Ordinal.{max v u} } {b : Ordinal.{max u v} } :
(∃ (i : Ordinal.{u}) (hi : i < o), Ordinal.nfpBFamily o f a f i hi b) Ordinal.nfpBFamily o f a b
theorem Ordinal.nfpBFamily_le_fp {o : Ordinal.{u}} {f : (b : Ordinal.{u}) → b < oOrdinal.{max u v}Ordinal.{max u v} } (H : ∀ (i : Ordinal.{u}) (hi : i < o), Monotone (f i hi)) {a : Ordinal.{max u v} } {b : Ordinal.{max u v} } (ab : a b) (h : ∀ (i : Ordinal.{u}) (hi : i < o), f i hi b b) :
theorem Ordinal.nfpBFamily_fp {o : Ordinal.{u}} {f : (b : Ordinal.{u}) → b < oOrdinal.{max u v}Ordinal.{max u v} } {i : Ordinal.{u}} {hi : i < o} (H : Ordinal.IsNormal (f i hi)) (a : Ordinal.{max v u} ) :
theorem Ordinal.apply_le_nfpBFamily {o : Ordinal.{u}} {f : (b : Ordinal.{u}) → b < oOrdinal.{max u v}Ordinal.{max u v} } (ho : o 0) (H : ∀ (i : Ordinal.{u}) (hi : i < o), Ordinal.IsNormal (f i hi)) {a : Ordinal.{max v u} } {b : Ordinal.{max u v} } :
(∀ (i : Ordinal.{u}) (hi : i < o), f i hi b Ordinal.nfpBFamily o f a) b Ordinal.nfpBFamily o f a
theorem Ordinal.nfpBFamily_eq_self {o : Ordinal.{u}} {f : (b : Ordinal.{u}) → b < oOrdinal.{max u v}Ordinal.{max u v} } {a : Ordinal.{max u v} } (h : ∀ (i : Ordinal.{u}) (hi : i < o), f i hi a = a) :
theorem Ordinal.fp_bfamily_unbounded {o : Ordinal.{u}} {f : (b : Ordinal.{u}) → b < oOrdinal.{max u v}Ordinal.{max u v} } (H : ∀ (i : Ordinal.{u}) (hi : i < o), Ordinal.IsNormal (f i hi)) :
Set.Unbounded (fun (x x_1 : Ordinal.{max u v} ) => x < x_1) (⋂ (i : Ordinal.{u}), ⋂ (hi : i < o), Function.fixedPoints (f i hi))

A generalization of the fixed point lemma for normal functions: any family of normal functions has an unbounded set of common fixed points.

The derivative of a family of normal functions is the sequence of their common fixed points.

This is defined as Ordinal.derivFamily of the type-indexed family associated to f.

Equations
theorem Ordinal.derivBFamily_fp {o : Ordinal.{u}} {f : (b : Ordinal.{u}) → b < oOrdinal.{max u v}Ordinal.{max u v} } {i : Ordinal.{u}} {hi : i < o} (H : Ordinal.IsNormal (f i hi)) (a : Ordinal.{max u v} ) :
theorem Ordinal.le_iff_derivBFamily {o : Ordinal.{u}} {f : (b : Ordinal.{u}) → b < oOrdinal.{max u v}Ordinal.{max u v} } (H : ∀ (i : Ordinal.{u}) (hi : i < o), Ordinal.IsNormal (f i hi)) {a : Ordinal.{max u v} } :
(∀ (i : Ordinal.{u}) (hi : i < o), f i hi a a) ∃ (b : Ordinal.{max v u} ), Ordinal.derivBFamily o f b = a
theorem Ordinal.fp_iff_derivBFamily {o : Ordinal.{u}} {f : (b : Ordinal.{u}) → b < oOrdinal.{max u v}Ordinal.{max u v} } (H : ∀ (i : Ordinal.{u}) (hi : i < o), Ordinal.IsNormal (f i hi)) {a : Ordinal.{max u v} } :
(∀ (i : Ordinal.{u}) (hi : i < o), f i hi a = a) ∃ (b : Ordinal.{max v u} ), Ordinal.derivBFamily o f b = a
theorem Ordinal.derivBFamily_eq_enumOrd {o : Ordinal.{u}} {f : (b : Ordinal.{u}) → b < oOrdinal.{max u v}Ordinal.{max u v} } (H : ∀ (i : Ordinal.{u}) (hi : i < o), Ordinal.IsNormal (f i hi)) :
Ordinal.derivBFamily o f = Ordinal.enumOrd (⋂ (i : Ordinal.{u}), ⋂ (hi : i < o), Function.fixedPoints (f i hi))

For a family of normal functions, Ordinal.derivBFamily enumerates the common fixed points.

Fixed points of a single function #

The next fixed point function, the least fixed point of the normal function f, at least a.

This is defined as ordinal.nfpFamily applied to a family consisting only of f.

Equations
@[simp]
theorem Ordinal.sup_iterate_eq_nfp (f : Ordinal.{u}Ordinal.{u}) :
(fun (a : Ordinal.{u}) => Ordinal.sup fun (n : ) => f^[n] a) = Ordinal.nfp f
theorem Ordinal.lt_nfp {f : Ordinal.{u}Ordinal.{u}} {a : Ordinal.{u}} {b : Ordinal.{u}} :
a < Ordinal.nfp f b ∃ (n : ), a < f^[n] b
theorem Ordinal.nfp_le_iff {f : Ordinal.{u}Ordinal.{u}} {a : Ordinal.{u}} {b : Ordinal.{u}} :
Ordinal.nfp f a b ∀ (n : ), f^[n] a b
theorem Ordinal.nfp_le {f : Ordinal.{u}Ordinal.{u}} {a : Ordinal.{u}} {b : Ordinal.{u}} :
(∀ (n : ), f^[n] a b)Ordinal.nfp f a b
@[simp]
theorem Ordinal.nfp_le_fp {f : Ordinal.{u_1}Ordinal.{u_1}} (H : Monotone f) {a : Ordinal.{u_1}} {b : Ordinal.{u_1}} (ab : a b) (h : f b b) :

The fixed point lemma for normal functions: any normal function has an unbounded set of fixed points.

The derivative of a normal function f is the sequence of fixed points of f.

This is defined as Ordinal.derivFamily applied to a trivial family consisting only of f.

Equations

Ordinal.deriv enumerates the fixed points of a normal function.

Fixed points of addition #

@[simp]

Fixed points of multiplication #

@[simp]
theorem Ordinal.nfp_mul_one {a : Ordinal.{u_1}} (ha : 0 < a) :
Ordinal.nfp (fun (x : Ordinal.{u_1}) => a * x) 1 = a ^ Ordinal.omega
@[simp]
theorem Ordinal.nfp_mul_zero (a : Ordinal.{u_1}) :
Ordinal.nfp (fun (x : Ordinal.{u_1}) => a * x) 0 = 0
theorem Ordinal.nfp_mul_eq_opow_omega {a : Ordinal.{u}} {b : Ordinal.{u}} (hb : 0 < b) (hba : b a ^ Ordinal.omega) :
Ordinal.nfp (fun (x : Ordinal.{u}) => a * x) b = a ^ Ordinal.omega
theorem Ordinal.nfp_mul_opow_omega_add {a : Ordinal.{u}} {c : Ordinal.{u}} (b : Ordinal.{u}) (ha : 0 < a) (hc : 0 < c) (hca : c a ^ Ordinal.omega) :