Documentation

Mathlib.Topology.Algebra.Module.FiniteDimension

Finite dimensional topological vector spaces over complete fields #

Let π•œ be a complete nontrivially normed field, and E a topological vector space (TVS) over π•œ (i.e we have [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [TopologicalAddGroup E] and [ContinuousSMul π•œ E]).

If E is finite dimensional and Hausdorff, then all linear maps from E to any other TVS are continuous.

When E is a normed space, this gets us the equivalence of norms in finite dimension.

Main results : #

TODO #

Generalize more of Mathlib.Analysis.NormedSpace.FiniteDimension to general TVSs.

Implementation detail #

The main result from which everything follows is the fact that, if ΞΎ : ΞΉ β†’ E is a finite basis, then ΞΎ.equivFun : E β†’β‚— (ΞΉ β†’ π•œ) is continuous. However, for technical reasons, it is easier to prove this when ΞΉ and E live in the same universe. So we start by doing that as a private lemma, then we deduce LinearMap.continuous_of_finiteDimensional from it, and then the general result follows as continuous_equivFun_basis.

theorem unique_topology_of_t2 {π•œ : Type u} [hnorm : NontriviallyNormedField π•œ] {t : TopologicalSpace π•œ} (h₁ : TopologicalAddGroup π•œ) (hβ‚‚ : ContinuousSMul π•œ π•œ) (h₃ : T2Space π•œ) :
t = UniformSpace.toTopologicalSpace

If π•œ is a nontrivially normed field, any T2 topology on π•œ which makes it a topological vector space over itself (with the norm topology) is equal to the norm topology.

theorem LinearMap.continuous_of_isClosed_ker {π•œ : Type u} [hnorm : NontriviallyNormedField π•œ] {E : Type v} [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousSMul π•œ E] (l : E β†’β‚—[π•œ] π•œ) (hl : IsClosed ↑(LinearMap.ker l)) :
Continuous ⇑l

Any linear form on a topological vector space over a nontrivially normed field is continuous if its kernel is closed.

theorem LinearMap.continuous_iff_isClosed_ker {π•œ : Type u} [hnorm : NontriviallyNormedField π•œ] {E : Type v} [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousSMul π•œ E] (l : E β†’β‚—[π•œ] π•œ) :

Any linear form on a topological vector space over a nontrivially normed field is continuous if and only if its kernel is closed.

theorem LinearMap.continuous_of_nonzero_on_open {π•œ : Type u} [hnorm : NontriviallyNormedField π•œ] {E : Type v} [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousSMul π•œ E] (l : E β†’β‚—[π•œ] π•œ) (s : Set E) (hs₁ : IsOpen s) (hsβ‚‚ : Set.Nonempty s) (hs₃ : βˆ€ x ∈ s, l x β‰  0) :
Continuous ⇑l

Over a nontrivially normed field, any linear form which is nonzero on a nonempty open set is automatically continuous.

theorem LinearMap.continuous_of_finiteDimensional {π•œ : Type u} [hnorm : NontriviallyNormedField π•œ] {E : Type v} [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousSMul π•œ E] {F' : Type x} [AddCommGroup F'] [Module π•œ F'] [TopologicalSpace F'] [TopologicalAddGroup F'] [ContinuousSMul π•œ F'] [CompleteSpace π•œ] [T2Space E] [FiniteDimensional π•œ E] (f : E β†’β‚—[π•œ] F') :
Continuous ⇑f

Any linear map on a finite dimensional space over a complete field is continuous.

instance LinearMap.continuousLinearMapClassOfFiniteDimensional {π•œ : Type u} [hnorm : NontriviallyNormedField π•œ] {E : Type v} [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousSMul π•œ E] {F' : Type x} [AddCommGroup F'] [Module π•œ F'] [TopologicalSpace F'] [TopologicalAddGroup F'] [ContinuousSMul π•œ F'] [CompleteSpace π•œ] [T2Space E] [FiniteDimensional π•œ E] :
ContinuousLinearMapClass (E β†’β‚—[π•œ] F') π•œ E F'
Equations
  • β‹― = β‹―
theorem continuous_equivFun_basis {π•œ : Type u} [hnorm : NontriviallyNormedField π•œ] {E : Type v} [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousSMul π•œ E] [CompleteSpace π•œ] [T2Space E] {ΞΉ : Type u_1} [Finite ΞΉ] (ΞΎ : Basis ΞΉ π•œ E) :

In finite dimensions over a non-discrete complete normed field, the canonical identification (in terms of a basis) with π•œ^n (endowed with the product topology) is continuous. This is the key fact which makes all linear maps from a T2 finite dimensional TVS over such a field continuous (see LinearMap.continuous_of_finiteDimensional), which in turn implies that all norms are equivalent in finite dimensions.

def LinearMap.toContinuousLinearMap {π•œ : Type u} [hnorm : NontriviallyNormedField π•œ] {E : Type v} [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousSMul π•œ E] {F' : Type x} [AddCommGroup F'] [Module π•œ F'] [TopologicalSpace F'] [TopologicalAddGroup F'] [ContinuousSMul π•œ F'] [CompleteSpace π•œ] [T2Space E] [FiniteDimensional π•œ E] :
(E β†’β‚—[π•œ] F') ≃ₗ[π•œ] E β†’L[π•œ] F'

The continuous linear map induced by a linear map on a finite dimensional space

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem LinearMap.coe_toContinuousLinearMap' {π•œ : Type u} [hnorm : NontriviallyNormedField π•œ] {E : Type v} [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousSMul π•œ E] {F' : Type x} [AddCommGroup F'] [Module π•œ F'] [TopologicalSpace F'] [TopologicalAddGroup F'] [ContinuousSMul π•œ F'] [CompleteSpace π•œ] [T2Space E] [FiniteDimensional π•œ E] (f : E β†’β‚—[π•œ] F') :
    ⇑(LinearMap.toContinuousLinearMap f) = ⇑f
    @[simp]
    theorem LinearMap.coe_toContinuousLinearMap {π•œ : Type u} [hnorm : NontriviallyNormedField π•œ] {E : Type v} [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousSMul π•œ E] {F' : Type x} [AddCommGroup F'] [Module π•œ F'] [TopologicalSpace F'] [TopologicalAddGroup F'] [ContinuousSMul π•œ F'] [CompleteSpace π•œ] [T2Space E] [FiniteDimensional π•œ E] (f : E β†’β‚—[π•œ] F') :
    ↑(LinearMap.toContinuousLinearMap f) = f
    @[simp]
    theorem LinearMap.coe_toContinuousLinearMap_symm {π•œ : Type u} [hnorm : NontriviallyNormedField π•œ] {E : Type v} [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousSMul π•œ E] {F' : Type x} [AddCommGroup F'] [Module π•œ F'] [TopologicalSpace F'] [TopologicalAddGroup F'] [ContinuousSMul π•œ F'] [CompleteSpace π•œ] [T2Space E] [FiniteDimensional π•œ E] :
    ⇑(LinearEquiv.symm LinearMap.toContinuousLinearMap) = ContinuousLinearMap.toLinearMap
    @[simp]
    theorem LinearMap.det_toContinuousLinearMap {π•œ : Type u} [hnorm : NontriviallyNormedField π•œ] {E : Type v} [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousSMul π•œ E] [CompleteSpace π•œ] [T2Space E] [FiniteDimensional π•œ E] (f : E β†’β‚—[π•œ] E) :
    ContinuousLinearMap.det (LinearMap.toContinuousLinearMap f) = LinearMap.det f
    @[simp]
    theorem LinearMap.ker_toContinuousLinearMap {π•œ : Type u} [hnorm : NontriviallyNormedField π•œ] {E : Type v} [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousSMul π•œ E] {F' : Type x} [AddCommGroup F'] [Module π•œ F'] [TopologicalSpace F'] [TopologicalAddGroup F'] [ContinuousSMul π•œ F'] [CompleteSpace π•œ] [T2Space E] [FiniteDimensional π•œ E] (f : E β†’β‚—[π•œ] F') :
    LinearMap.ker (LinearMap.toContinuousLinearMap f) = LinearMap.ker f
    @[simp]
    theorem LinearMap.range_toContinuousLinearMap {π•œ : Type u} [hnorm : NontriviallyNormedField π•œ] {E : Type v} [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousSMul π•œ E] {F' : Type x} [AddCommGroup F'] [Module π•œ F'] [TopologicalSpace F'] [TopologicalAddGroup F'] [ContinuousSMul π•œ F'] [CompleteSpace π•œ] [T2Space E] [FiniteDimensional π•œ E] (f : E β†’β‚—[π•œ] F') :
    LinearMap.range (LinearMap.toContinuousLinearMap f) = LinearMap.range f
    theorem LinearMap.isOpenMap_of_finiteDimensional {π•œ : Type u} [hnorm : NontriviallyNormedField π•œ] {E : Type v} [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousSMul π•œ E] {F : Type w} [AddCommGroup F] [Module π•œ F] [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousSMul π•œ F] [CompleteSpace π•œ] [T2Space E] [FiniteDimensional π•œ E] (f : F β†’β‚—[π•œ] E) (hf : Function.Surjective ⇑f) :
    IsOpenMap ⇑f

    A surjective linear map f with finite dimensional codomain is an open map.

    instance LinearMap.canLiftContinuousLinearMap {π•œ : Type u} [hnorm : NontriviallyNormedField π•œ] {E : Type v} [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousSMul π•œ E] {F : Type w} [AddCommGroup F] [Module π•œ F] [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousSMul π•œ F] [CompleteSpace π•œ] [T2Space E] [FiniteDimensional π•œ E] :
    CanLift (E β†’β‚—[π•œ] F) (E β†’L[π•œ] F) ContinuousLinearMap.toLinearMap fun (x : E β†’β‚—[π•œ] F) => True
    Equations
    • β‹― = β‹―
    def LinearEquiv.toContinuousLinearEquiv {π•œ : Type u} [hnorm : NontriviallyNormedField π•œ] {E : Type v} [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousSMul π•œ E] {F : Type w} [AddCommGroup F] [Module π•œ F] [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousSMul π•œ F] [CompleteSpace π•œ] [T2Space E] [T2Space F] [FiniteDimensional π•œ E] (e : E ≃ₗ[π•œ] F) :
    E ≃L[π•œ] F

    The continuous linear equivalence induced by a linear equivalence on a finite dimensional space.

    Equations
    Instances For
      @[simp]
      theorem LinearEquiv.coe_toContinuousLinearEquiv {π•œ : Type u} [hnorm : NontriviallyNormedField π•œ] {E : Type v} [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousSMul π•œ E] {F : Type w} [AddCommGroup F] [Module π•œ F] [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousSMul π•œ F] [CompleteSpace π•œ] [T2Space E] [T2Space F] [FiniteDimensional π•œ E] (e : E ≃ₗ[π•œ] F) :
      ↑↑(LinearEquiv.toContinuousLinearEquiv e) = ↑e
      @[simp]
      theorem LinearEquiv.coe_toContinuousLinearEquiv' {π•œ : Type u} [hnorm : NontriviallyNormedField π•œ] {E : Type v} [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousSMul π•œ E] {F : Type w} [AddCommGroup F] [Module π•œ F] [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousSMul π•œ F] [CompleteSpace π•œ] [T2Space E] [T2Space F] [FiniteDimensional π•œ E] (e : E ≃ₗ[π•œ] F) :
      @[simp]
      theorem LinearEquiv.coe_toContinuousLinearEquiv_symm {π•œ : Type u} [hnorm : NontriviallyNormedField π•œ] {E : Type v} [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousSMul π•œ E] {F : Type w} [AddCommGroup F] [Module π•œ F] [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousSMul π•œ F] [CompleteSpace π•œ] [T2Space E] [T2Space F] [FiniteDimensional π•œ E] (e : E ≃ₗ[π•œ] F) :
      @[simp]
      @[simp]
      theorem LinearEquiv.toLinearEquiv_toContinuousLinearEquiv {π•œ : Type u} [hnorm : NontriviallyNormedField π•œ] {E : Type v} [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousSMul π•œ E] {F : Type w} [AddCommGroup F] [Module π•œ F] [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousSMul π•œ F] [CompleteSpace π•œ] [T2Space E] [T2Space F] [FiniteDimensional π•œ E] (e : E ≃ₗ[π•œ] F) :
      instance LinearEquiv.canLiftContinuousLinearEquiv {π•œ : Type u} [hnorm : NontriviallyNormedField π•œ] {E : Type v} [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousSMul π•œ E] {F : Type w} [AddCommGroup F] [Module π•œ F] [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousSMul π•œ F] [CompleteSpace π•œ] [T2Space E] [T2Space F] [FiniteDimensional π•œ E] :
      CanLift (E ≃ₗ[π•œ] F) (E ≃L[π•œ] F) ContinuousLinearEquiv.toLinearEquiv fun (x : E ≃ₗ[π•œ] F) => True
      Equations
      • β‹― = β‹―
      theorem FiniteDimensional.nonempty_continuousLinearEquiv_of_finrank_eq {π•œ : Type u} [hnorm : NontriviallyNormedField π•œ] {E : Type v} [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousSMul π•œ E] {F : Type w} [AddCommGroup F] [Module π•œ F] [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousSMul π•œ F] [CompleteSpace π•œ] [T2Space E] [T2Space F] [FiniteDimensional π•œ E] [FiniteDimensional π•œ F] (cond : FiniteDimensional.finrank π•œ E = FiniteDimensional.finrank π•œ F) :
      Nonempty (E ≃L[π•œ] F)

      Two finite-dimensional topological vector spaces over a complete normed field are continuously linearly equivalent if they have the same (finite) dimension.

      Two finite-dimensional topological vector spaces over a complete normed field are continuously linearly equivalent if and only if they have the same (finite) dimension.

      def ContinuousLinearEquiv.ofFinrankEq {π•œ : Type u} [hnorm : NontriviallyNormedField π•œ] {E : Type v} [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousSMul π•œ E] {F : Type w} [AddCommGroup F] [Module π•œ F] [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousSMul π•œ F] [CompleteSpace π•œ] [T2Space E] [T2Space F] [FiniteDimensional π•œ E] [FiniteDimensional π•œ F] (cond : FiniteDimensional.finrank π•œ E = FiniteDimensional.finrank π•œ F) :
      E ≃L[π•œ] F

      A continuous linear equivalence between two finite-dimensional topological vector spaces over a complete normed field of the same (finite) dimension.

      Equations
      Instances For
        def Basis.constrL {π•œ : Type u} [hnorm : NontriviallyNormedField π•œ] {E : Type v} [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousSMul π•œ E] {F : Type w} [AddCommGroup F] [Module π•œ F] [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousSMul π•œ F] [CompleteSpace π•œ] {ΞΉ : Type u_1} [Finite ΞΉ] [T2Space E] (v : Basis ΞΉ π•œ E) (f : ΞΉ β†’ F) :
        E β†’L[π•œ] F

        Construct a continuous linear map given the value at a finite basis.

        Equations
        Instances For
          @[simp]
          theorem Basis.coe_constrL {π•œ : Type u} [hnorm : NontriviallyNormedField π•œ] {E : Type v} [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousSMul π•œ E] {F : Type w} [AddCommGroup F] [Module π•œ F] [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousSMul π•œ F] [CompleteSpace π•œ] {ΞΉ : Type u_1} [Finite ΞΉ] [T2Space E] (v : Basis ΞΉ π•œ E) (f : ΞΉ β†’ F) :
          ↑(Basis.constrL v f) = (Basis.constr v π•œ) f
          @[simp]
          theorem Basis.equivFunL_apply {π•œ : Type u} [hnorm : NontriviallyNormedField π•œ] {E : Type v} [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousSMul π•œ E] [CompleteSpace π•œ] {ΞΉ : Type u_1} [Finite ΞΉ] [T2Space E] (v : Basis ΞΉ π•œ E) :
          βˆ€ (a : E) (a_1 : ΞΉ), (Basis.equivFunL v) a a_1 = (v.repr a) a_1
          def Basis.equivFunL {π•œ : Type u} [hnorm : NontriviallyNormedField π•œ] {E : Type v} [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousSMul π•œ E] [CompleteSpace π•œ] {ΞΉ : Type u_1} [Finite ΞΉ] [T2Space E] (v : Basis ΞΉ π•œ E) :
          E ≃L[π•œ] ΞΉ β†’ π•œ

          The continuous linear equivalence between a vector space over π•œ with a finite basis and functions from its basis indexing type to π•œ.

          Equations
          Instances For
            @[simp]
            theorem Basis.equivFunL_symm_apply_repr {π•œ : Type u} [hnorm : NontriviallyNormedField π•œ] {E : Type v} [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousSMul π•œ E] [CompleteSpace π•œ] {ΞΉ : Type u_1} [Finite ΞΉ] [T2Space E] (v : Basis ΞΉ π•œ E) (x : E) :
            @[simp]
            theorem Basis.constrL_apply {π•œ : Type u} [hnorm : NontriviallyNormedField π•œ] {E : Type v} [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousSMul π•œ E] {F : Type w} [AddCommGroup F] [Module π•œ F] [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousSMul π•œ F] [CompleteSpace π•œ] [T2Space E] {ΞΉ : Type u_2} [Fintype ΞΉ] (v : Basis ΞΉ π•œ E) (f : ΞΉ β†’ F) (e : E) :
            (Basis.constrL v f) e = Finset.sum Finset.univ fun (i : ΞΉ) => (Basis.equivFun v) e i β€’ f i
            @[simp]
            theorem Basis.constrL_basis {π•œ : Type u} [hnorm : NontriviallyNormedField π•œ] {E : Type v} [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousSMul π•œ E] {F : Type w} [AddCommGroup F] [Module π•œ F] [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousSMul π•œ F] [CompleteSpace π•œ] {ΞΉ : Type u_1} [Finite ΞΉ] [T2Space E] (v : Basis ΞΉ π•œ E) (f : ΞΉ β†’ F) (i : ΞΉ) :
            (Basis.constrL v f) (v i) = f i
            def ContinuousLinearMap.toContinuousLinearEquivOfDetNeZero {π•œ : Type u} [hnorm : NontriviallyNormedField π•œ] {E : Type v} [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousSMul π•œ E] [CompleteSpace π•œ] [T2Space E] [FiniteDimensional π•œ E] (f : E β†’L[π•œ] E) (hf : ContinuousLinearMap.det f β‰  0) :
            E ≃L[π•œ] E

            Builds a continuous linear equivalence from a continuous linear map on a finite-dimensional vector space whose determinant is nonzero.

            Equations
            Instances For
              theorem Matrix.toLin_finTwoProd_toContinuousLinearMap {π•œ : Type u} [hnorm : NontriviallyNormedField π•œ] [CompleteSpace π•œ] (a : π•œ) (b : π•œ) (c : π•œ) (d : π•œ) :
              LinearMap.toContinuousLinearMap ((Matrix.toLin (Basis.finTwoProd π•œ) (Basis.finTwoProd π•œ)) (Matrix.of ![![a, b], ![c, d]])) = ContinuousLinearMap.prod (a β€’ ContinuousLinearMap.fst π•œ π•œ π•œ + b β€’ ContinuousLinearMap.snd π•œ π•œ π•œ) (c β€’ ContinuousLinearMap.fst π•œ π•œ π•œ + d β€’ ContinuousLinearMap.snd π•œ π•œ π•œ)
              theorem FiniteDimensional.complete (π•œ : Type u_1) (E : Type u_2) [NontriviallyNormedField π•œ] [CompleteSpace π•œ] [AddCommGroup E] [UniformSpace E] [T2Space E] [UniformAddGroup E] [Module π•œ E] [ContinuousSMul π•œ E] [FiniteDimensional π•œ E] :
              theorem Submodule.complete_of_finiteDimensional {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [CompleteSpace π•œ] [AddCommGroup E] [UniformSpace E] [T2Space E] [UniformAddGroup E] [Module π•œ E] [ContinuousSMul π•œ E] (s : Submodule π•œ E) [FiniteDimensional π•œ β†₯s] :
              IsComplete ↑s

              A finite-dimensional subspace is complete.

              theorem Submodule.closed_of_finiteDimensional {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [CompleteSpace π•œ] [AddCommGroup E] [TopologicalSpace E] [T2Space E] [TopologicalAddGroup E] [Module π•œ E] [ContinuousSMul π•œ E] (s : Submodule π•œ E) [FiniteDimensional π•œ β†₯s] :
              IsClosed ↑s

              A finite-dimensional subspace is closed.

              theorem LinearMap.closedEmbedding_of_injective {π•œ : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField π•œ] [CompleteSpace π•œ] [AddCommGroup E] [TopologicalSpace E] [T2Space E] [TopologicalAddGroup E] [Module π•œ E] [ContinuousSMul π•œ E] [AddCommGroup F] [TopologicalSpace F] [T2Space F] [TopologicalAddGroup F] [Module π•œ F] [ContinuousSMul π•œ F] [FiniteDimensional π•œ E] {f : E β†’β‚—[π•œ] F} (hf : LinearMap.ker f = βŠ₯) :

              An injective linear map with finite-dimensional domain is a closed embedding.

              theorem closedEmbedding_smul_left {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [CompleteSpace π•œ] [AddCommGroup E] [TopologicalSpace E] [T2Space E] [TopologicalAddGroup E] [Module π•œ E] [ContinuousSMul π•œ E] {c : E} (hc : c β‰  0) :
              ClosedEmbedding fun (x : π•œ) => x β€’ c
              theorem isClosedMap_smul_left {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [CompleteSpace π•œ] [AddCommGroup E] [TopologicalSpace E] [T2Space E] [TopologicalAddGroup E] [Module π•œ E] [ContinuousSMul π•œ E] (c : E) :
              IsClosedMap fun (x : π•œ) => x β€’ c
              theorem ContinuousLinearMap.exists_right_inverse_of_surjective {π•œ : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField π•œ] [CompleteSpace π•œ] [AddCommGroup E] [TopologicalSpace E] [TopologicalAddGroup E] [Module π•œ E] [ContinuousSMul π•œ E] [AddCommGroup F] [TopologicalSpace F] [T2Space F] [TopologicalAddGroup F] [Module π•œ F] [ContinuousSMul π•œ F] [FiniteDimensional π•œ F] (f : E β†’L[π•œ] F) (hf : LinearMap.range f = ⊀) :
              βˆƒ (g : F β†’L[π•œ] E), ContinuousLinearMap.comp f g = ContinuousLinearMap.id π•œ F