Documentation
banach_tarski
.
Orbit
Search
Google site search
return to top
source
Imports
Init
banach_tarski.Definitions
banach_tarski.Lemma_3_1
Imported by
same_orbit
orbit_A
list_intersection_pairwise
all_orbits
all_orbits_countable
choose
M
M_countable
source
def
same_orbit
(a :
r_3
)
(b :
r_3
)
:
Prop
Equations
same_orbit
a
b
=
∃ (p :
↥
G
),
rotate
(
↑
p
)
a
=
b
Instances For
source
def
orbit_A
(a :
r_3
)
:
Set
↑
L
Equations
orbit_A
a
=
{
b
:
↑
L
|
same_orbit
a
↑
b
}
Instances For
source
def
list_intersection_pairwise
(α :
Type
)
(w :
List
(
Set
α
)
)
:
Prop
Equations
list_intersection_pairwise
α
w
=
∀ (
i
j :
Fin
(
List.length
w
)
),
i
≠
j
→
List.get
w
i
∩
List.get
w
j
=
∅
Instances For
source
def
all_orbits
:
Set
(
Set
r_3
)
Equations
all_orbits
=
{
w
:
Set
r_3
|
∃ (x :
↑
L
),
Set.Nonempty
w
∧
Subtype.val
''
orbit_A
↑
x
=
w
}
Instances For
source
theorem
all_orbits_countable
:
Set.Countable
all_orbits
source
noncomputable def
choose
(x :
Set
r_3
)
(hx :
x
∈
all_orbits
)
:
r_3
Equations
choose
x
hx
=
Id.run
(
let_fun h :=
⋯
;
pure
(
Classical.choose
h
)
)
Instances For
source
def
M
:
Set
r_3
Equations
M
=
{
w
:
r_3
|
∃ (x :
Set
r_3
) (hx :
x
∈
all_orbits
),
choose
x
hx
=
w
}
Instances For
source
theorem
M_countable
:
Set.Countable
M