Equations
- increasingly_filtered s = ∀ U ∈ s, ∀ V ∈ s, ∃ W ∈ s, U ≤ W ∧ V ≤ W
Instances For
def
decreasingly_filtered
{E : Type u_3}
{ι : Type u_4}
[e_frm : Order.Frame E]
(V : ι → Sublocale E)
:
Equations
- decreasingly_filtered V = ∀ (n m : ι), ∃ (l : ι), V l ≤ V n ∧ V l ≤ V m
Instances For
Instances For
theorem
Measure.iSup_filtered
{E : Type u_3}
[e_frm : Order.Frame E]
{m : Measure}
{ι : Type u_5}
(f : ι → Open E)
:
theorem
Measure.monotone
{E : Type u_3}
[e_frm : Order.Frame E]
{m : Measure}
(u v : Open E)
(h : u = v)
:
@[simp]
noncomputable def
Measure.caratheodory
{X : Type u_1}
[h : Order.Frame X]
{m : Measure}
(a : Sublocale X)
:
Equations
- Measure.caratheodory a = sInf (m.toFun '' a.Open_Neighbourhood)
Instances For
theorem
Measure.caratheodory.open_eq_toFun
{X : Type u_1}
[h : Order.Frame X]
{m : Measure}
(x : Open X)
:
theorem
Measure.caratheodory.mono
{E : Type u_3}
[e_frm : Order.Frame E]
{m : Measure}
{A B : Sublocale E}
:
A ≤ B → caratheodory A ≤ caratheodory B
theorem
Measure.caratheodory.le_top
{E : Type u_3}
[e_frm : Order.Frame E]
(m : Measure)
(a : Sublocale E)
:
theorem
Measure.caratheodory.le_top_toFun
{E : Type u_3}
[e_frm : Order.Frame E]
(m : Measure)
(a : Sublocale E)
:
theorem
Exists_Neighbourhood_epsilon
{E : Type u_3}
[e_frm : Order.Frame E]
{m : Measure}
(a : Sublocale E)
(ε : NNReal)
:
ε > 0 → ∃ w ∈ a.Open_Neighbourhood, m.toFun w ≤ Measure.caratheodory a + ε
theorem
Exists_Neighbourhood_epsilon_lt
{E : Type u_3}
[e_frm : Order.Frame E]
{m : Measure}
(a : Sublocale E)
(ε : NNReal)
:
ε > 0 → ∃ w ∈ a.Open_Neighbourhood, m.toFun w < Measure.caratheodory a + ε
theorem
Measure.caratheodory.preserves_sup'
{X : Type u_1}
[h : Order.Frame X]
(m : Measure)
(X_n : ℕ → Sublocale X)
:
Monotone X_n → caratheodory (iSup X_n) = iSup (caratheodory ∘ X_n)
Leroy Lemme 1 -> Magie
theorem
Measure.caratheodory.subadditive
{E : Type u_3}
[e_frm : Order.Frame E]
{m : Measure}
(a b : Sublocale E)
: