Documentation

Leroy.Measure.Basic

def increasingly_filtered {Z : Type u_5} [PartialOrder Z] (s : Set Z) :
Equations
Instances For
    def decreasingly_filtered {E : Type u_3} {ι : Type u_4} [e_frm : Order.Frame E] (V : ιSublocale E) :
    Equations
    Instances For
      structure Measure {X : Type u_1} [h : Order.Frame X] :
      Type u_1
      Instances For
        theorem Measure.strictly_additive'' {E : Type u_3} [e_frm : Order.Frame E] {m : Measure} (U V : Open E) :
        m.toFun U + m.toFun V = m.toFun (U V) + m.toFun (U V)
        theorem Measure.strictly_additive' {E : Type u_3} [e_frm : Order.Frame E] {m : Measure} (U V : Open E) :
        m.toFun (U V) = m.toFun U + m.toFun V - m.toFun (U V)
        theorem Measure.iSup_filtered {E : Type u_3} [e_frm : Order.Frame E] {m : Measure} {ι : Type u_5} (f : ιOpen E) :
        theorem Measure.monotone {E : Type u_3} [e_frm : Order.Frame E] {m : Measure} (u v : Open E) (h : u = v) :
        m.toFun u = m.toFun v
        @[simp]
        theorem Measure.all_le_top {X : Type u_1} [h : Order.Frame X] {m : Measure} (a : Open X) :
        noncomputable def Measure.caratheodory {X : Type u_1} [h : Order.Frame X] {m : Measure} (a : Sublocale X) :
        Equations
        Instances For
          theorem Measure.caratheodory.mono {E : Type u_3} [e_frm : Order.Frame E] {m : Measure} {A B : Sublocale E} :
          theorem Exists_Neighbourhood_epsilon {E : Type u_3} [e_frm : Order.Frame E] {m : Measure} (a : Sublocale E) (ε : NNReal) :
          ε > 0wa.Open_Neighbourhood, m.toFun w Measure.caratheodory a + ε
          theorem Exists_Neighbourhood_epsilon_lt {E : Type u_3} [e_frm : Order.Frame E] {m : Measure} (a : Sublocale E) (ε : NNReal) :
          ε > 0wa.Open_Neighbourhood, m.toFun w < Measure.caratheodory a + ε
          Equations
          Instances For
            def Rpos :
            Equations
            Instances For
              theorem Measure.caratheodory.preserves_sup' {X : Type u_1} [h : Order.Frame X] (m : Measure) (X_n : Sublocale X) :

              Leroy Lemme 1 -> Magie