Documentation

Mathlib.Data.Multiset.Powerset

The powerset of a multiset #

powerset #

def Multiset.powersetAux {α : Type u_1} (l : List α) :

A helper function for the powerset of a multiset. Given a list l, returns a list of sublists of l as multisets.

Equations
Instances For
    @[simp]
    theorem Multiset.mem_powersetAux {α : Type u_1} {l : List α} {s : Multiset α} :
    def Multiset.powersetAux' {α : Type u_1} (l : List α) :

    Helper function for the powerset of a multiset. Given a list l, returns a list of sublists of l (using sublists'), as multisets.

    Equations
    Instances For
      @[simp]
      theorem Multiset.powerset_aux'_perm {α : Type u_1} {l₁ : List α} {l₂ : List α} (p : List.Perm l₁ l₂) :
      theorem Multiset.powersetAux_perm {α : Type u_1} {l₁ : List α} {l₂ : List α} (p : List.Perm l₁ l₂) :
      def Multiset.powerset {α : Type u_1} (s : Multiset α) :

      The power set of a multiset.

      Equations
      Instances For
        theorem Multiset.powerset_coe {α : Type u_1} (l : List α) :
        Multiset.powerset l = (List.map Multiset.ofList (List.sublists l))
        @[simp]
        theorem Multiset.powerset_coe' {α : Type u_1} (l : List α) :
        Multiset.powerset l = (List.map Multiset.ofList (List.sublists' l))
        @[simp]
        @[simp]
        theorem Multiset.mem_powerset {α : Type u_1} {s : Multiset α} {t : Multiset α} :
        @[simp]
        theorem Multiset.card_powerset {α : Type u_1} (s : Multiset α) :
        Multiset.card (Multiset.powerset s) = 2 ^ Multiset.card s
        theorem Multiset.revzip_powersetAux {α : Type u_1} {l : List α} ⦃x : Multiset α × Multiset α (h : x List.revzip (Multiset.powersetAux l)) :
        x.1 + x.2 = l
        theorem Multiset.revzip_powersetAux' {α : Type u_1} {l : List α} ⦃x : Multiset α × Multiset α (h : x List.revzip (Multiset.powersetAux' l)) :
        x.1 + x.2 = l
        theorem Multiset.revzip_powersetAux_lemma {α : Type u} [DecidableEq α] (l : List α) {l' : List (Multiset α)} (H : ∀ ⦃x : Multiset α × Multiset α⦄, x List.revzip l'x.1 + x.2 = l) :
        List.revzip l' = List.map (fun (x : Multiset α) => (x, l - x)) l'
        theorem Multiset.revzip_powersetAux_perm {α : Type u_1} {l₁ : List α} {l₂ : List α} (p : List.Perm l₁ l₂) :

        powersetCard #

        def Multiset.powersetCardAux {α : Type u_1} (n : ) (l : List α) :

        Helper function for powersetCard. Given a list l, powersetCardAux n l is the list of sublists of length n, as multisets.

        Equations
        Instances For
          theorem Multiset.powersetCardAux_eq_map_coe {α : Type u_1} {n : } {l : List α} :
          @[simp]
          theorem Multiset.mem_powersetCardAux {α : Type u_1} {n : } {l : List α} {s : Multiset α} :
          s Multiset.powersetCardAux n l s l Multiset.card s = n
          @[simp]
          @[simp]
          theorem Multiset.powersetCardAux_nil {α : Type u_1} (n : ) :
          theorem Multiset.powersetCardAux_perm {α : Type u_1} {n : } {l₁ : List α} {l₂ : List α} (p : List.Perm l₁ l₂) :
          def Multiset.powersetCard {α : Type u_1} (n : ) (s : Multiset α) :

          powersetCard n s is the multiset of all submultisets of s of length n.

          Equations
          Instances For
            theorem Multiset.powersetCard_coe {α : Type u_1} (n : ) (l : List α) :
            Multiset.powersetCard n l = (List.map Multiset.ofList (List.sublistsLen n l))
            @[simp]
            @[simp]
            theorem Multiset.mem_powersetCard {α : Type u_1} {n : } {s : Multiset α} {t : Multiset α} :
            s Multiset.powersetCard n t s t Multiset.card s = n
            @[simp]
            theorem Multiset.card_powersetCard {α : Type u_1} (n : ) (s : Multiset α) :
            Multiset.card (Multiset.powersetCard n s) = Nat.choose (Multiset.card s) n
            theorem Multiset.powersetCard_mono {α : Type u_1} (n : ) {s : Multiset α} {t : Multiset α} (h : s t) :
            @[simp]
            theorem Multiset.powersetCard_eq_empty {α : Type u_2} (n : ) {s : Multiset α} (h : Multiset.card s < n) :
            @[simp]
            theorem Multiset.powersetCard_card_add {α : Type u_1} (s : Multiset α) {i : } (hi : 0 < i) :
            Multiset.powersetCard (Multiset.card s + i) s = 0
            theorem Multiset.powersetCard_map {α : Type u_1} {β : Type u_2} (f : αβ) (n : ) (s : Multiset α) :
            theorem Multiset.bind_powerset_len {α : Type u_2} (S : Multiset α) :
            (Multiset.bind (Multiset.range (Multiset.card S + 1)) fun (k : ) => Multiset.powersetCard k S) = Multiset.powerset S

            Alias of the reverse direction of Multiset.nodup_powerset.

            Alias of the forward direction of Multiset.nodup_powerset.