Theory of monic polynomials #
We give several tools for proving that polynomials are monic, e.g.
Monic.mul
, Monic.map
, Monic.pow
.
theorem
Polynomial.monic_zero_iff_subsingleton'
{R : Type u}
[Semiring R]
:
Polynomial.Monic 0 ↔ (∀ (f g : Polynomial R), f = g) ∧ ∀ (a b : R), a = b
theorem
Polynomial.Monic.as_sum
{R : Type u}
[Semiring R]
{p : Polynomial R}
(hp : Polynomial.Monic p)
:
p = Polynomial.X ^ Polynomial.natDegree p + Finset.sum (Finset.range (Polynomial.natDegree p)) fun (i : ℕ) =>
Polynomial.C (Polynomial.coeff p i) * Polynomial.X ^ i
theorem
Polynomial.ne_zero_of_ne_zero_of_monic
{R : Type u}
[Semiring R]
{p : Polynomial R}
{q : Polynomial R}
(hp : p ≠ 0)
(hq : Polynomial.Monic q)
:
q ≠ 0
theorem
Polynomial.Monic.map
{R : Type u}
{S : Type v}
[Semiring R]
{p : Polynomial R}
[Semiring S]
(f : R →+* S)
(hp : Polynomial.Monic p)
:
theorem
Polynomial.monic_C_mul_of_mul_leadingCoeff_eq_one
{R : Type u}
[Semiring R]
{p : Polynomial R}
{b : R}
(hp : b * Polynomial.leadingCoeff p = 1)
:
Polynomial.Monic (Polynomial.C b * p)
theorem
Polynomial.monic_mul_C_of_leadingCoeff_mul_eq_one
{R : Type u}
[Semiring R]
{p : Polynomial R}
{b : R}
(hp : Polynomial.leadingCoeff p * b = 1)
:
Polynomial.Monic (p * Polynomial.C b)
theorem
Polynomial.monic_of_degree_le
{R : Type u}
[Semiring R]
{p : Polynomial R}
(n : ℕ)
(H1 : Polynomial.degree p ≤ ↑n)
(H2 : Polynomial.coeff p n = 1)
:
theorem
Polynomial.monic_X_pow_add
{R : Type u}
[Semiring R]
{p : Polynomial R}
{n : ℕ}
(H : Polynomial.degree p ≤ ↑n)
:
Polynomial.Monic (Polynomial.X ^ (n + 1) + p)
theorem
Polynomial.monic_X_pow_add_C
{R : Type u}
(a : R)
[Semiring R]
{n : ℕ}
(h : n ≠ 0)
:
Polynomial.Monic (Polynomial.X ^ n + Polynomial.C a)
theorem
Polynomial.monic_X_add_C
{R : Type u}
[Semiring R]
(x : R)
:
Polynomial.Monic (Polynomial.X + Polynomial.C x)
theorem
Polynomial.Monic.mul
{R : Type u}
[Semiring R]
{p : Polynomial R}
{q : Polynomial R}
(hp : Polynomial.Monic p)
(hq : Polynomial.Monic q)
:
Polynomial.Monic (p * q)
theorem
Polynomial.Monic.pow
{R : Type u}
[Semiring R]
{p : Polynomial R}
(hp : Polynomial.Monic p)
(n : ℕ)
:
Polynomial.Monic (p ^ n)
theorem
Polynomial.Monic.add_of_left
{R : Type u}
[Semiring R]
{p : Polynomial R}
{q : Polynomial R}
(hp : Polynomial.Monic p)
(hpq : Polynomial.degree q < Polynomial.degree p)
:
Polynomial.Monic (p + q)
theorem
Polynomial.Monic.add_of_right
{R : Type u}
[Semiring R]
{p : Polynomial R}
{q : Polynomial R}
(hq : Polynomial.Monic q)
(hpq : Polynomial.degree p < Polynomial.degree q)
:
Polynomial.Monic (p + q)
theorem
Polynomial.Monic.of_mul_monic_left
{R : Type u}
[Semiring R]
{p : Polynomial R}
{q : Polynomial R}
(hp : Polynomial.Monic p)
(hpq : Polynomial.Monic (p * q))
:
theorem
Polynomial.Monic.of_mul_monic_right
{R : Type u}
[Semiring R]
{p : Polynomial R}
{q : Polynomial R}
(hq : Polynomial.Monic q)
(hpq : Polynomial.Monic (p * q))
:
@[simp]
theorem
Polynomial.Monic.natDegree_eq_zero_iff_eq_one
{R : Type u}
[Semiring R]
{p : Polynomial R}
(hp : Polynomial.Monic p)
:
Polynomial.natDegree p = 0 ↔ p = 1
@[simp]
theorem
Polynomial.Monic.degree_le_zero_iff_eq_one
{R : Type u}
[Semiring R]
{p : Polynomial R}
(hp : Polynomial.Monic p)
:
Polynomial.degree p ≤ 0 ↔ p = 1
theorem
Polynomial.Monic.natDegree_mul
{R : Type u}
[Semiring R]
{p : Polynomial R}
{q : Polynomial R}
(hp : Polynomial.Monic p)
(hq : Polynomial.Monic q)
:
theorem
Polynomial.Monic.degree_mul_comm
{R : Type u}
[Semiring R]
{p : Polynomial R}
(hp : Polynomial.Monic p)
(q : Polynomial R)
:
Polynomial.degree (p * q) = Polynomial.degree (q * p)
theorem
Polynomial.Monic.natDegree_mul'
{R : Type u}
[Semiring R]
{p : Polynomial R}
{q : Polynomial R}
(hp : Polynomial.Monic p)
(hq : q ≠ 0)
:
theorem
Polynomial.Monic.natDegree_mul_comm
{R : Type u}
[Semiring R]
{p : Polynomial R}
(hp : Polynomial.Monic p)
(q : Polynomial R)
:
Polynomial.natDegree (p * q) = Polynomial.natDegree (q * p)
theorem
Polynomial.Monic.not_dvd_of_natDegree_lt
{R : Type u}
[Semiring R]
{p : Polynomial R}
{q : Polynomial R}
(hp : Polynomial.Monic p)
(h0 : q ≠ 0)
(hl : Polynomial.natDegree q < Polynomial.natDegree p)
:
theorem
Polynomial.Monic.not_dvd_of_degree_lt
{R : Type u}
[Semiring R]
{p : Polynomial R}
{q : Polynomial R}
(hp : Polynomial.Monic p)
(h0 : q ≠ 0)
(hl : Polynomial.degree q < Polynomial.degree p)
:
theorem
Polynomial.Monic.nextCoeff_mul
{R : Type u}
[Semiring R]
{p : Polynomial R}
{q : Polynomial R}
(hp : Polynomial.Monic p)
(hq : Polynomial.Monic q)
:
theorem
Polynomial.Monic.nextCoeff_pow
{R : Type u}
[Semiring R]
{p : Polynomial R}
(hp : Polynomial.Monic p)
(n : ℕ)
:
Polynomial.nextCoeff (p ^ n) = n • Polynomial.nextCoeff p
theorem
Polynomial.Monic.eq_one_of_map_eq_one
{R : Type u}
[Semiring R]
{p : Polynomial R}
{S : Type u_1}
[Semiring S]
[Nontrivial S]
(f : R →+* S)
(hp : Polynomial.Monic p)
(map_eq : Polynomial.map f p = 1)
:
p = 1
theorem
Polynomial.Monic.natDegree_pow
{R : Type u}
[Semiring R]
{p : Polynomial R}
(hp : Polynomial.Monic p)
(n : ℕ)
:
Polynomial.natDegree (p ^ n) = n * Polynomial.natDegree p
@[simp]
theorem
Polynomial.natDegree_pow_X_add_C
{R : Type u}
[Semiring R]
[Nontrivial R]
(n : ℕ)
(r : R)
:
Polynomial.natDegree ((Polynomial.X + Polynomial.C r) ^ n) = n
theorem
Polynomial.Monic.eq_one_of_isUnit
{R : Type u}
[Semiring R]
{p : Polynomial R}
(hm : Polynomial.Monic p)
(hpu : IsUnit p)
:
p = 1
theorem
Polynomial.Monic.isUnit_iff
{R : Type u}
[Semiring R]
{p : Polynomial R}
(hm : Polynomial.Monic p)
:
theorem
Polynomial.eq_of_monic_of_associated
{R : Type u}
[Semiring R]
{p : Polynomial R}
{q : Polynomial R}
(hp : Polynomial.Monic p)
(hq : Polynomial.Monic q)
(hpq : Associated p q)
:
p = q
theorem
Polynomial.monic_multiset_prod_of_monic
{R : Type u}
{ι : Type y}
[CommSemiring R]
(t : Multiset ι)
(f : ι → Polynomial R)
(ht : ∀ i ∈ t, Polynomial.Monic (f i))
:
theorem
Polynomial.monic_prod_of_monic
{R : Type u}
{ι : Type y}
[CommSemiring R]
(s : Finset ι)
(f : ι → Polynomial R)
(hs : ∀ i ∈ s, Polynomial.Monic (f i))
:
Polynomial.Monic (Finset.prod s fun (i : ι) => f i)
theorem
Polynomial.Monic.nextCoeff_multiset_prod
{R : Type u}
{ι : Type y}
[CommSemiring R]
(t : Multiset ι)
(f : ι → Polynomial R)
(h : ∀ i ∈ t, Polynomial.Monic (f i))
:
Polynomial.nextCoeff (Multiset.prod (Multiset.map f t)) = Multiset.sum (Multiset.map (fun (i : ι) => Polynomial.nextCoeff (f i)) t)
theorem
Polynomial.Monic.nextCoeff_prod
{R : Type u}
{ι : Type y}
[CommSemiring R]
(s : Finset ι)
(f : ι → Polynomial R)
(h : ∀ i ∈ s, Polynomial.Monic (f i))
:
Polynomial.nextCoeff (Finset.prod s fun (i : ι) => f i) = Finset.sum s fun (i : ι) => Polynomial.nextCoeff (f i)
@[simp]
theorem
Polynomial.Monic.natDegree_map
{R : Type u}
{S : Type v}
[Semiring R]
[Semiring S]
[Nontrivial S]
{P : Polynomial R}
(hmo : Polynomial.Monic P)
(f : R →+* S)
:
@[simp]
theorem
Polynomial.Monic.degree_map
{R : Type u}
{S : Type v}
[Semiring R]
[Semiring S]
[Nontrivial S]
{P : Polynomial R}
(hmo : Polynomial.Monic P)
(f : R →+* S)
:
theorem
Polynomial.degree_map_eq_of_injective
{R : Type u}
{S : Type v}
[Semiring R]
[Semiring S]
{f : R →+* S}
(hf : Function.Injective ⇑f)
(p : Polynomial R)
:
theorem
Polynomial.natDegree_map_eq_of_injective
{R : Type u}
{S : Type v}
[Semiring R]
[Semiring S]
{f : R →+* S}
(hf : Function.Injective ⇑f)
(p : Polynomial R)
:
theorem
Polynomial.leadingCoeff_map'
{R : Type u}
{S : Type v}
[Semiring R]
[Semiring S]
{f : R →+* S}
(hf : Function.Injective ⇑f)
(p : Polynomial R)
:
theorem
Polynomial.nextCoeff_map
{R : Type u}
{S : Type v}
[Semiring R]
[Semiring S]
{f : R →+* S}
(hf : Function.Injective ⇑f)
(p : Polynomial R)
:
Polynomial.nextCoeff (Polynomial.map f p) = f (Polynomial.nextCoeff p)
theorem
Polynomial.leadingCoeff_of_injective
{R : Type u}
{S : Type v}
[Semiring R]
[Semiring S]
{f : R →+* S}
(hf : Function.Injective ⇑f)
(p : Polynomial R)
:
theorem
Polynomial.monic_of_injective
{R : Type u}
{S : Type v}
[Semiring R]
[Semiring S]
{f : R →+* S}
(hf : Function.Injective ⇑f)
{p : Polynomial R}
(hp : Polynomial.Monic (Polynomial.map f p))
:
theorem
Function.Injective.monic_map_iff
{R : Type u}
{S : Type v}
[Semiring R]
[Semiring S]
{f : R →+* S}
(hf : Function.Injective ⇑f)
{p : Polynomial R}
:
theorem
Polynomial.monic_X_sub_C
{R : Type u}
[Ring R]
(x : R)
:
Polynomial.Monic (Polynomial.X - Polynomial.C x)
theorem
Polynomial.monic_X_pow_sub
{R : Type u}
[Ring R]
{p : Polynomial R}
{n : ℕ}
(H : Polynomial.degree p ≤ ↑n)
:
Polynomial.Monic (Polynomial.X ^ (n + 1) - p)
theorem
Polynomial.monic_X_pow_sub_C
{R : Type u}
[Ring R]
(a : R)
{n : ℕ}
(h : n ≠ 0)
:
Polynomial.Monic (Polynomial.X ^ n - Polynomial.C a)
X ^ n - a
is monic.
theorem
Polynomial.Monic.sub_of_left
{R : Type u}
[Ring R]
{p : Polynomial R}
{q : Polynomial R}
(hp : Polynomial.Monic p)
(hpq : Polynomial.degree q < Polynomial.degree p)
:
Polynomial.Monic (p - q)
theorem
Polynomial.Monic.sub_of_right
{R : Type u}
[Ring R]
{p : Polynomial R}
{q : Polynomial R}
(hq : Polynomial.leadingCoeff q = -1)
(hpq : Polynomial.degree p < Polynomial.degree q)
:
Polynomial.Monic (p - q)
@[simp]
theorem
Polynomial.Monic.mul_left_ne_zero
{R : Type u}
[Semiring R]
{p : Polynomial R}
(hp : Polynomial.Monic p)
{q : Polynomial R}
(hq : q ≠ 0)
:
theorem
Polynomial.Monic.mul_right_ne_zero
{R : Type u}
[Semiring R]
{p : Polynomial R}
(hp : Polynomial.Monic p)
{q : Polynomial R}
(hq : q ≠ 0)
:
theorem
Polynomial.Monic.mul_natDegree_lt_iff
{R : Type u}
[Semiring R]
{p : Polynomial R}
(h : Polynomial.Monic p)
{q : Polynomial R}
:
Polynomial.natDegree (p * q) < Polynomial.natDegree p ↔ p ≠ 1 ∧ q = 0
theorem
Polynomial.Monic.mul_right_eq_zero_iff
{R : Type u}
[Semiring R]
{p : Polynomial R}
(h : Polynomial.Monic p)
{q : Polynomial R}
:
theorem
Polynomial.Monic.mul_left_eq_zero_iff
{R : Type u}
[Semiring R]
{p : Polynomial R}
(h : Polynomial.Monic p)
{q : Polynomial R}
:
theorem
Polynomial.Monic.isRegular
{R : Type u_1}
[Ring R]
{p : Polynomial R}
(hp : Polynomial.Monic p)
:
theorem
Polynomial.degree_smul_of_smul_regular
{R : Type u}
[Semiring R]
{S : Type u_1}
[Monoid S]
[DistribMulAction S R]
{k : S}
(p : Polynomial R)
(h : IsSMulRegular R k)
:
Polynomial.degree (k • p) = Polynomial.degree p
theorem
Polynomial.natDegree_smul_of_smul_regular
{R : Type u}
[Semiring R]
{S : Type u_1}
[Monoid S]
[DistribMulAction S R]
{k : S}
(p : Polynomial R)
(h : IsSMulRegular R k)
:
Polynomial.natDegree (k • p) = Polynomial.natDegree p
theorem
Polynomial.leadingCoeff_smul_of_smul_regular
{R : Type u}
[Semiring R]
{S : Type u_1}
[Monoid S]
[DistribMulAction S R]
{k : S}
(p : Polynomial R)
(h : IsSMulRegular R k)
:
Polynomial.leadingCoeff (k • p) = k • Polynomial.leadingCoeff p
theorem
Polynomial.monic_of_isUnit_leadingCoeff_inv_smul
{R : Type u}
[Semiring R]
{p : Polynomial R}
(h : IsUnit (Polynomial.leadingCoeff p))
:
Polynomial.Monic ((IsUnit.unit h)⁻¹ • p)
theorem
Polynomial.isUnit_leadingCoeff_mul_right_eq_zero_iff
{R : Type u}
[Semiring R]
{p : Polynomial R}
(h : IsUnit (Polynomial.leadingCoeff p))
{q : Polynomial R}
:
theorem
Polynomial.isUnit_leadingCoeff_mul_left_eq_zero_iff
{R : Type u}
[Semiring R]
{p : Polynomial R}
(h : IsUnit (Polynomial.leadingCoeff p))
{q : Polynomial R}
: