Antichains #
This file defines antichains. An antichain is a set where any two distinct elements are not related.
If the relation is (≤)
, this corresponds to incomparability and usual order antichains. If the
relation is G.adj
for G : SimpleGraph α
, this corresponds to independent sets of G
.
Definitions #
IsAntichain r s
: Any two elements ofs : Set α
are unrelated byr : α → α → Prop
.IsStrongAntichain r s
: Any two elements ofs : Set α
are not related byr : α → α → Prop
to a common element.IsAntichain.mk r s
: Turnss
into an antichain by keeping only the "maximal" elements.
An antichain is a set such that no two distinct elements are related.
Equations
- IsAntichain r s = Set.Pairwise s rᶜ
Instances For
theorem
IsAntichain.subset
{α : Type u_1}
{r : α → α → Prop}
{s : Set α}
{t : Set α}
(hs : IsAntichain r s)
(h : t ⊆ s)
:
IsAntichain r t
theorem
IsAntichain.mono
{α : Type u_1}
{r₁ : α → α → Prop}
{r₂ : α → α → Prop}
{s : Set α}
(hs : IsAntichain r₁ s)
(h : r₂ ≤ r₁)
:
IsAntichain r₂ s
theorem
IsAntichain.mono_on
{α : Type u_1}
{r₁ : α → α → Prop}
{r₂ : α → α → Prop}
{s : Set α}
(hs : IsAntichain r₁ s)
(h : Set.Pairwise s fun ⦃a b : α⦄ => r₂ a b → r₁ a b)
:
IsAntichain r₂ s
theorem
IsAntichain.eq
{α : Type u_1}
{r : α → α → Prop}
{s : Set α}
(hs : IsAntichain r s)
{a : α}
{b : α}
(ha : a ∈ s)
(hb : b ∈ s)
(h : r a b)
:
a = b
theorem
IsAntichain.eq'
{α : Type u_1}
{r : α → α → Prop}
{s : Set α}
(hs : IsAntichain r s)
{a : α}
{b : α}
(ha : a ∈ s)
(hb : b ∈ s)
(h : r b a)
:
a = b
theorem
IsAntichain.isAntisymm
{α : Type u_1}
{r : α → α → Prop}
(h : IsAntichain r Set.univ)
:
IsAntisymm α r
theorem
IsAntichain.subsingleton
{α : Type u_1}
{r : α → α → Prop}
{s : Set α}
[IsTrichotomous α r]
(h : IsAntichain r s)
:
theorem
IsAntichain.flip
{α : Type u_1}
{r : α → α → Prop}
{s : Set α}
(hs : IsAntichain r s)
:
IsAntichain (flip r) s
theorem
IsAntichain.swap
{α : Type u_1}
{r : α → α → Prop}
{s : Set α}
(hs : IsAntichain r s)
:
IsAntichain (Function.swap r) s
theorem
IsAntichain.image
{α : Type u_1}
{β : Type u_2}
{r : α → α → Prop}
{r' : β → β → Prop}
{s : Set α}
(hs : IsAntichain r s)
(f : α → β)
(h : ∀ ⦃a b : α⦄, r' (f a) (f b) → r a b)
:
IsAntichain r' (f '' s)
theorem
IsAntichain.preimage
{α : Type u_1}
{β : Type u_2}
{r : α → α → Prop}
{r' : β → β → Prop}
{s : Set α}
(hs : IsAntichain r s)
{f : β → α}
(hf : Function.Injective f)
(h : ∀ ⦃a b : β⦄, r' a b → r (f a) (f b))
:
IsAntichain r' (f ⁻¹' s)
theorem
isAntichain_insert
{α : Type u_1}
{r : α → α → Prop}
{s : Set α}
{a : α}
:
IsAntichain r (insert a s) ↔ IsAntichain r s ∧ ∀ ⦃b : α⦄, b ∈ s → a ≠ b → ¬r a b ∧ ¬r b a
theorem
IsAntichain.insert
{α : Type u_1}
{r : α → α → Prop}
{s : Set α}
{a : α}
(hs : IsAntichain r s)
(hl : ∀ ⦃b : α⦄, b ∈ s → a ≠ b → ¬r b a)
(hr : ∀ ⦃b : α⦄, b ∈ s → a ≠ b → ¬r a b)
:
IsAntichain r (insert a s)
theorem
isAntichain_insert_of_symmetric
{α : Type u_1}
{r : α → α → Prop}
{s : Set α}
{a : α}
(hr : Symmetric r)
:
IsAntichain r (insert a s) ↔ IsAntichain r s ∧ ∀ ⦃b : α⦄, b ∈ s → a ≠ b → ¬r a b
theorem
IsAntichain.insert_of_symmetric
{α : Type u_1}
{r : α → α → Prop}
{s : Set α}
{a : α}
(hs : IsAntichain r s)
(hr : Symmetric r)
(h : ∀ ⦃b : α⦄, b ∈ s → a ≠ b → ¬r a b)
:
IsAntichain r (insert a s)
theorem
IsAntichain.image_relEmbedding
{α : Type u_1}
{β : Type u_2}
{r : α → α → Prop}
{r' : β → β → Prop}
{s : Set α}
(hs : IsAntichain r s)
(φ : r ↪r r')
:
IsAntichain r' (⇑φ '' s)
theorem
IsAntichain.preimage_relEmbedding
{α : Type u_1}
{β : Type u_2}
{r : α → α → Prop}
{r' : β → β → Prop}
{t : Set β}
(ht : IsAntichain r' t)
(φ : r ↪r r')
:
IsAntichain r (⇑φ ⁻¹' t)
theorem
IsAntichain.image_relIso
{α : Type u_1}
{β : Type u_2}
{r : α → α → Prop}
{r' : β → β → Prop}
{s : Set α}
(hs : IsAntichain r s)
(φ : r ≃r r')
:
IsAntichain r' (⇑φ '' s)
theorem
IsAntichain.preimage_relIso
{α : Type u_1}
{β : Type u_2}
{r : α → α → Prop}
{r' : β → β → Prop}
{t : Set β}
(hs : IsAntichain r' t)
(φ : r ≃r r')
:
IsAntichain r (⇑φ ⁻¹' t)
theorem
IsAntichain.image_relEmbedding_iff
{α : Type u_1}
{β : Type u_2}
{r : α → α → Prop}
{r' : β → β → Prop}
{s : Set α}
{φ : r ↪r r'}
:
IsAntichain r' (⇑φ '' s) ↔ IsAntichain r s
theorem
IsAntichain.image_relIso_iff
{α : Type u_1}
{β : Type u_2}
{r : α → α → Prop}
{r' : β → β → Prop}
{s : Set α}
{φ : r ≃r r'}
:
IsAntichain r' (⇑φ '' s) ↔ IsAntichain r s
theorem
IsAntichain.image_embedding
{α : Type u_1}
{β : Type u_2}
{s : Set α}
[LE α]
[LE β]
(hs : IsAntichain (fun (x x_1 : α) => x ≤ x_1) s)
(φ : α ↪o β)
:
IsAntichain (fun (x x_1 : β) => x ≤ x_1) (⇑φ '' s)
theorem
IsAntichain.preimage_embedding
{α : Type u_1}
{β : Type u_2}
[LE α]
[LE β]
{t : Set β}
(ht : IsAntichain (fun (x x_1 : β) => x ≤ x_1) t)
(φ : α ↪o β)
:
IsAntichain (fun (x x_1 : α) => x ≤ x_1) (⇑φ ⁻¹' t)
theorem
IsAntichain.image_embedding_iff
{α : Type u_1}
{β : Type u_2}
{s : Set α}
[LE α]
[LE β]
{φ : α ↪o β}
:
IsAntichain (fun (x x_1 : β) => x ≤ x_1) (⇑φ '' s) ↔ IsAntichain (fun (x x_1 : α) => x ≤ x_1) s
theorem
IsAntichain.image_iso
{α : Type u_1}
{β : Type u_2}
{s : Set α}
[LE α]
[LE β]
(hs : IsAntichain (fun (x x_1 : α) => x ≤ x_1) s)
(φ : α ≃o β)
:
IsAntichain (fun (x x_1 : β) => x ≤ x_1) (⇑φ '' s)
theorem
IsAntichain.image_iso_iff
{α : Type u_1}
{β : Type u_2}
{s : Set α}
[LE α]
[LE β]
{φ : α ≃o β}
:
IsAntichain (fun (x x_1 : β) => x ≤ x_1) (⇑φ '' s) ↔ IsAntichain (fun (x x_1 : α) => x ≤ x_1) s
theorem
IsAntichain.preimage_iso
{α : Type u_1}
{β : Type u_2}
[LE α]
[LE β]
{t : Set β}
(ht : IsAntichain (fun (x x_1 : β) => x ≤ x_1) t)
(φ : α ≃o β)
:
IsAntichain (fun (x x_1 : α) => x ≤ x_1) (⇑φ ⁻¹' t)
theorem
IsAntichain.preimage_iso_iff
{α : Type u_1}
{β : Type u_2}
[LE α]
[LE β]
{t : Set β}
{φ : α ≃o β}
:
IsAntichain (fun (x x_1 : α) => x ≤ x_1) (⇑φ ⁻¹' t) ↔ IsAntichain (fun (x x_1 : β) => x ≤ x_1) t
theorem
IsAntichain.to_dual
{α : Type u_1}
{s : Set α}
[LE α]
(hs : IsAntichain (fun (x x_1 : α) => x ≤ x_1) s)
:
IsAntichain (fun (x x_1 : αᵒᵈ) => x ≤ x_1) s
theorem
IsAntichain.to_dual_iff
{α : Type u_1}
{s : Set α}
[LE α]
:
IsAntichain (fun (x x_1 : α) => x ≤ x_1) s ↔ IsAntichain (fun (x x_1 : αᵒᵈ) => x ≤ x_1) s
theorem
IsAntichain.image_compl
{α : Type u_1}
{s : Set α}
[BooleanAlgebra α]
(hs : IsAntichain (fun (x x_1 : α) => x ≤ x_1) s)
:
IsAntichain (fun (x x_1 : α) => x ≤ x_1) (compl '' s)
theorem
IsAntichain.preimage_compl
{α : Type u_1}
{s : Set α}
[BooleanAlgebra α]
(hs : IsAntichain (fun (x x_1 : α) => x ≤ x_1) s)
:
IsAntichain (fun (x x_1 : α) => x ≤ x_1) (compl ⁻¹' s)
theorem
Set.Subsingleton.isAntichain
{α : Type u_1}
{s : Set α}
(hs : Set.Subsingleton s)
(r : α → α → Prop)
:
IsAntichain r s
theorem
isAntichain_and_greatest_iff
{α : Type u_1}
{s : Set α}
{a : α}
[Preorder α]
:
IsAntichain (fun (x x_1 : α) => x ≤ x_1) s ∧ IsGreatest s a ↔ s = {a}
theorem
IsAntichain.least_iff
{α : Type u_1}
{s : Set α}
{a : α}
[Preorder α]
(hs : IsAntichain (fun (x x_1 : α) => x ≤ x_1) s)
:
theorem
IsAntichain.greatest_iff
{α : Type u_1}
{s : Set α}
{a : α}
[Preorder α]
(hs : IsAntichain (fun (x x_1 : α) => x ≤ x_1) s)
:
IsGreatest s a ↔ s = {a}
theorem
IsLeast.antichain_iff
{α : Type u_1}
{s : Set α}
{a : α}
[Preorder α]
(hs : IsLeast s a)
:
IsAntichain (fun (x x_1 : α) => x ≤ x_1) s ↔ s = {a}
theorem
IsGreatest.antichain_iff
{α : Type u_1}
{s : Set α}
{a : α}
[Preorder α]
(hs : IsGreatest s a)
:
IsAntichain (fun (x x_1 : α) => x ≤ x_1) s ↔ s = {a}
Strong antichains #
A strong (upward) antichain is a set such that no two distinct elements are related to a common element.
Equations
- IsStrongAntichain r s = Set.Pairwise s fun (a b : α) => ∀ (c : α), ¬r a c ∨ ¬r b c
Instances For
theorem
IsStrongAntichain.subset
{α : Type u_1}
{r : α → α → Prop}
{s : Set α}
{t : Set α}
(hs : IsStrongAntichain r s)
(h : t ⊆ s)
:
theorem
IsStrongAntichain.mono
{α : Type u_1}
{r₁ : α → α → Prop}
{r₂ : α → α → Prop}
{s : Set α}
(hs : IsStrongAntichain r₁ s)
(h : r₂ ≤ r₁)
:
IsStrongAntichain r₂ s
theorem
IsStrongAntichain.eq
{α : Type u_1}
{r : α → α → Prop}
{s : Set α}
(hs : IsStrongAntichain r s)
{a : α}
{b : α}
{c : α}
(ha : a ∈ s)
(hb : b ∈ s)
(hac : r a c)
(hbc : r b c)
:
a = b
theorem
IsStrongAntichain.isAntichain
{α : Type u_1}
{r : α → α → Prop}
{s : Set α}
[IsRefl α r]
(h : IsStrongAntichain r s)
:
IsAntichain r s
theorem
IsStrongAntichain.subsingleton
{α : Type u_1}
{r : α → α → Prop}
{s : Set α}
[IsDirected α r]
(h : IsStrongAntichain r s)
:
theorem
IsStrongAntichain.flip
{α : Type u_1}
{r : α → α → Prop}
{s : Set α}
[IsSymm α r]
(hs : IsStrongAntichain r s)
:
IsStrongAntichain (flip r) s
theorem
IsStrongAntichain.swap
{α : Type u_1}
{r : α → α → Prop}
{s : Set α}
[IsSymm α r]
(hs : IsStrongAntichain r s)
:
theorem
IsStrongAntichain.image
{α : Type u_1}
{β : Type u_2}
{r : α → α → Prop}
{r' : β → β → Prop}
{s : Set α}
(hs : IsStrongAntichain r s)
{f : α → β}
(hf : Function.Surjective f)
(h : ∀ (a b : α), r' (f a) (f b) → r a b)
:
IsStrongAntichain r' (f '' s)
theorem
IsStrongAntichain.preimage
{α : Type u_1}
{β : Type u_2}
{r : α → α → Prop}
{r' : β → β → Prop}
{s : Set α}
(hs : IsStrongAntichain r s)
{f : β → α}
(hf : Function.Injective f)
(h : ∀ (a b : β), r' a b → r (f a) (f b))
:
IsStrongAntichain r' (f ⁻¹' s)
theorem
isStrongAntichain_insert
{α : Type u_1}
{r : α → α → Prop}
{s : Set α}
{a : α}
:
IsStrongAntichain r (insert a s) ↔ IsStrongAntichain r s ∧ ∀ ⦃b : α⦄, b ∈ s → a ≠ b → ∀ (c : α), ¬r a c ∨ ¬r b c
theorem
IsStrongAntichain.insert
{α : Type u_1}
{r : α → α → Prop}
{s : Set α}
{a : α}
(hs : IsStrongAntichain r s)
(h : ∀ ⦃b : α⦄, b ∈ s → a ≠ b → ∀ (c : α), ¬r a c ∨ ¬r b c)
:
IsStrongAntichain r (insert a s)
theorem
Set.Subsingleton.isStrongAntichain
{α : Type u_1}
{s : Set α}
(hs : Set.Subsingleton s)
(r : α → α → Prop)
:
theorem
IsAntichain.of_strictMonoOn_antitoneOn
{α : Type u_1}
{β : Type u_2}
[PartialOrder α]
[PartialOrder β]
{f : α → β}
{s : Set α}
(hf : StrictMonoOn f s)
(hf' : AntitoneOn f s)
:
IsAntichain (fun (x x_1 : α) => x ≤ x_1) s
theorem
IsAntichain.of_monotoneOn_strictAntiOn
{α : Type u_1}
{β : Type u_2}
[PartialOrder α]
[PartialOrder β]
{f : α → β}
{s : Set α}
(hf : MonotoneOn f s)
(hf' : StrictAntiOn f s)
:
IsAntichain (fun (x x_1 : α) => x ≤ x_1) s
Weak antichains #
def
IsWeakAntichain
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → Preorder (α i)]
(s : Set ((i : ι) → α i))
:
A weak antichain in Π i, α i
is a set such that no two distinct elements are strongly less
than each other.
Equations
- IsWeakAntichain s = IsAntichain (fun (x x_1 : (i : ι) → α i) => StrongLT x x_1) s
Instances For
theorem
IsWeakAntichain.subset
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → Preorder (α i)]
{s : Set ((i : ι) → α i)}
{t : Set ((i : ι) → α i)}
(hs : IsWeakAntichain s)
:
t ⊆ s → IsWeakAntichain t
theorem
IsWeakAntichain.insert
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → Preorder (α i)]
{s : Set ((i : ι) → α i)}
{a : (i : ι) → α i}
(hs : IsWeakAntichain s)
:
theorem
IsAntichain.isWeakAntichain
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → Preorder (α i)]
{s : Set ((i : ι) → α i)}
(hs : IsAntichain (fun (x x_1 : (i : ι) → α i) => x ≤ x_1) s)
:
theorem
Set.Subsingleton.isWeakAntichain
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → Preorder (α i)]
{s : Set ((i : ι) → α i)}
(hs : Set.Subsingleton s)
: