Theory of monic polynomials #
We define integralNormalization
, which relate arbitrary polynomials to monic ones.
If f : R[X]
is a nonzero polynomial with root z
, integralNormalization f
is
a monic polynomial with root leadingCoeff f * z
.
Moreover, integralNormalization 0 = 0
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
Polynomial.integralNormalization_coeff
{R : Type u}
[Semiring R]
{f : Polynomial R}
{i : ℕ}
:
Polynomial.coeff (Polynomial.integralNormalization f) i = if Polynomial.degree f = ↑i then 1
else Polynomial.coeff f i * Polynomial.leadingCoeff f ^ (Polynomial.natDegree f - 1 - i)
theorem
Polynomial.integralNormalization_coeff_degree
{R : Type u}
[Semiring R]
{f : Polynomial R}
{i : ℕ}
(hi : Polynomial.degree f = ↑i)
:
theorem
Polynomial.integralNormalization_coeff_natDegree
{R : Type u}
[Semiring R]
{f : Polynomial R}
(hf : f ≠ 0)
:
theorem
Polynomial.integralNormalization_coeff_ne_degree
{R : Type u}
[Semiring R]
{f : Polynomial R}
{i : ℕ}
(hi : Polynomial.degree f ≠ ↑i)
:
Polynomial.coeff (Polynomial.integralNormalization f) i = Polynomial.coeff f i * Polynomial.leadingCoeff f ^ (Polynomial.natDegree f - 1 - i)
theorem
Polynomial.integralNormalization_coeff_ne_natDegree
{R : Type u}
[Semiring R]
{f : Polynomial R}
{i : ℕ}
(hi : i ≠ Polynomial.natDegree f)
:
Polynomial.coeff (Polynomial.integralNormalization f) i = Polynomial.coeff f i * Polynomial.leadingCoeff f ^ (Polynomial.natDegree f - 1 - i)
theorem
Polynomial.monic_integralNormalization
{R : Type u}
[Semiring R]
{f : Polynomial R}
(hf : f ≠ 0)
:
@[simp]
theorem
Polynomial.support_integralNormalization
{R : Type u}
[Ring R]
[IsDomain R]
{f : Polynomial R}
:
theorem
Polynomial.integralNormalization_eval₂_eq_zero
{R : Type u}
{S : Type v}
[CommRing R]
[IsDomain R]
[CommSemiring S]
{p : Polynomial R}
(f : R →+* S)
{z : S}
(hz : Polynomial.eval₂ f z p = 0)
(inj : ∀ (x : R), f x = 0 → x = 0)
:
Polynomial.eval₂ f (z * f (Polynomial.leadingCoeff p)) (Polynomial.integralNormalization p) = 0
theorem
Polynomial.integralNormalization_aeval_eq_zero
{R : Type u}
{S : Type v}
[CommRing R]
[IsDomain R]
[CommSemiring S]
[Algebra R S]
{f : Polynomial R}
{z : S}
(hz : (Polynomial.aeval z) f = 0)
(inj : ∀ (x : R), (algebraMap R S) x = 0 → x = 0)
:
(Polynomial.aeval (z * (algebraMap R S) (Polynomial.leadingCoeff f))) (Polynomial.integralNormalization f) = 0