Documentation

banach_tarski.Equidecomposable.Def

def intersection {α : Type} (a : Set α × Set α) :
Set α
Equations
Instances For
    def union {α : Type} (a : Set α) (b : Set α) :
    Set α
    Equations
    Instances For
      def list_union {α : Type} (x : List (Set α)) :
      Set α
      Equations
      Instances For
        def pairs {α : Type u_1} :
        List αList (α × α)
        Equations
        Instances For
          def list_intersection {α : Type} (x : List (Set α)) :
          Set α
          Equations
          Instances For
            def translate_set (x : Set r_3) (p : r_3) :
            Equations
            Instances For
              theorem translate_zero (x : r_3) :
              translate ![0, 0, 0] x = x
              theorem translate_set_zero (x : Set r_3) :
              translate_set x ![0, 0, 0] = x
              def remove_first {α : Type} (x : List α) :
              List α
              Equations
              Instances For
                theorem remove_first_length_eq {α : Type} {a : Type} {n : } (x : List α) (h_n : n = List.length x) :
                def rotate_list (n : ) (x : List (Set r_3)) (p : List (GL (Fin 3) )) (h_n : n = List.length x) (h : List.length x = List.length p) :
                Equations
                • One or more equations did not get rendered due to their size.
                • rotate_list 0 x p h_n_2 h = []
                Instances For
                  theorem rotate_list_length_cons (n : ) (x : List (Set r_3)) (p : List (GL (Fin 3) )) (h_n : n = List.length x) (h : List.length x = List.length p) :
                  List.length (rotate_list n x p h_n h) = n
                  def translate_list (n : ) (x : List (Set r_3)) (p : List r_3) (h_n : n = List.length x) (h : List.length x = List.length p) :
                  Equations
                  • One or more equations did not get rendered due to their size.
                  • translate_list 0 x p h_n_2 h = []
                  Instances For
                    theorem translate_list_zero (n : ) (x : List (Set r_3)) (p : List r_3) (h_n : n = List.length x) (h : List.length x = List.length p) (h0 : yp, y = ![0, 0, 0]) :
                    translate_list n x p h_n h = x
                    theorem translate_list_length_cons (n : ) (x : List (Set r_3)) (p : List r_3) (h_n : n = List.length x) (h : List.length x = List.length p) :
                    List.length (translate_list n x p h_n h) = n
                    def equidecomposable (X : Set r_3) (Y : Set r_3) :
                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      instance union_isAssoc {α : Type} :
                      Std.Associative fun (x x_1 : Set α) => union x x_1
                      Equations
                      • =
                      theorem foldl_union {α : Type} (L : List (Set α)) (X : Set α) :
                      List.foldl union X L = List.foldl union L X
                      theorem list_intersection_list {α : Type} (X : Set α) (a : List (Set α)) (h1 : list_intersection a = ) (h2 : list_union a X = ) :
                      theorem equidecomposable_subset (X : Set r_3) (Y : Set r_3) (X₁ : Set r_3) (X₂ : Set r_3) (Y₁ : Set r_3) (Y₂ : Set r_3) (hx_union : X₁ X₂ = X) (hx_intersection : X₁ X₂ = ) (hy_union : Y₁ Y₂ = Y) (hxy_eq : X₁ = Y₁) (h_equi : equidecomposable X₂ Y₂) :