Equations
- intersection a = a.1 ∩ a.2
Instances For
Equations
- list_union x = List.foldl union ∅ x
Instances For
Equations
- list_intersection x = list_union (List.map intersection (pairs x))
Instances For
Equations
- remove_first x = List.tail x
Instances For
theorem
remove_first_length_eq
{α : Type}
{a : Type}
{n : ℕ}
(x : List α)
(h_n : n = List.length x)
:
List.length (remove_first x) = n - 1
def
rotate_list
(n : ℕ)
(x : List (Set r_3))
(p : List (GL (Fin 3) ℝ))
(h_n : n = List.length x)
(h : List.length x = List.length p)
:
Equations
- One or more equations did not get rendered due to their size.
- rotate_list 0 x p h_n_2 h = []
Instances For
theorem
rotate_list_length_cons
(n : ℕ)
(x : List (Set r_3))
(p : List (GL (Fin 3) ℝ))
(h_n : n = List.length x)
(h : List.length x = List.length p)
:
List.length (rotate_list n x p h_n h) = n
def
translate_list
(n : ℕ)
(x : List (Set r_3))
(p : List r_3)
(h_n : n = List.length x)
(h : List.length x = List.length p)
:
Equations
- One or more equations did not get rendered due to their size.
- translate_list 0 x p h_n_2 h = []
Instances For
theorem
translate_list_zero
(n : ℕ)
(x : List (Set r_3))
(p : List r_3)
(h_n : n = List.length x)
(h : List.length x = List.length p)
(h0 : ∀ y ∈ p, y = ![0, 0, 0])
:
translate_list n x p h_n h = x
theorem
translate_list_length_cons
(n : ℕ)
(x : List (Set r_3))
(p : List r_3)
(h_n : n = List.length x)
(h : List.length x = List.length p)
:
List.length (translate_list n x p h_n h) = n
Equations
- ⋯ = ⋯
theorem
foldl_union
{α : Type}
(L : List (Set α))
(X : Set α)
:
List.foldl union X L = List.foldl union ∅ L ∪ X
theorem
list_intersection_list
{α : Type}
(X : Set α)
(a : List (Set α))
(h1 : list_intersection a = ∅)
(h2 : list_union a ∩ X = ∅)
:
list_intersection (X :: a) = ∅