Documentation

Leroy.Measure.Regular

def well_inside {E : Type u_3} [e_frm : Order.Frame E] (U V : Open E) :
Equations
Instances For
    theorem le_of_well_inside {E : Type u_3} [e_frm : Order.Frame E] (U V : Open E) (h : U V) :
    U V
    def well_inside_iff {E : Type u_3} [e_frm : Order.Frame E] (U V : Open E) :
    U V ∃ (c : Open E), c U = c V =

    Stone spaces s.80 und auch Sketches of an Elephant 501...

    Equations
    • =
    Instances For
      def regular (E : Type u_4) [Order.Frame E] :

      Leroy definition Steht auch in Sketches of an Elephant 501

      Equations
      Instances For
        theorem Closed.eq_intersection_opens {E : Type u_4} [e_frm : Order.Frame E] [e_regular : Fact (regular E)] (U : Open E) :
        U.compl.toSublocale = ⨅ (V : Open E), ⨅ (_ : V U), { element := V.element }.toSublocale
        theorem Sublocale.intersection_Opens {E : Type u_4} [e_frm : Order.Frame E] [e_regular : Fact (regular E)] (a : Sublocale E) :
        ∃ (s : Set (Open E)), a = sInf (Open.toSublocale '' s)

        Leroy Lemme 2.2 TODO stone spaces als quelle vlt Seite 81. 1.2 Maybe depends on: Nucleus.eq_join_open_closed

        theorem Sublocale.intersection_Neighbourhood {E : Type u_4} [e_frm : Order.Frame E] [e_regular : Fact (regular E)] (a : Sublocale E) :
        theorem Measure.add_complement {E : Type u_4} [e_frm : Order.Frame E] [e_regular : Fact (regular E)] {m : Measure} (U : Open E) :

        Leroy Lemme 3

        noncomputable def Measure.restrict_open {E : Type u_4} [e_frm : Order.Frame E] (m : Measure) (w : Open E) :
        Open ENNReal
        Equations
        Instances For
          theorem Measure.restrict_mono {E : Type u_4} [e_frm : Order.Frame E] {m : Measure} {w : Open E} (U V : Open E) :
          U Vm.restrict_open w U m.restrict_open w V
          theorem Measure.restrict_pseudosymm {E : Type u_4} [e_frm : Order.Frame E] {m : Measure} {w U V : Open E} :
          theorem Measure.restrict_filtered {E : Type u_4} [e_frm : Order.Frame E] {m : Measure} {w : Open E} (s : Set (Open E)) :
          noncomputable def Measure.restrict_open_measure {E : Type u_4} [e_frm : Order.Frame E] (m : Measure) (w : Open E) :
          Equations
          Instances For
            def Open_Interiors {E : Type u_4} [e_frm : Order.Frame E] (u : Sublocale E) :
            Set (Open E)
            Equations
            Instances For
              theorem Measure.add_complement_inf {E : Type u_4} [e_frm : Order.Frame E] [e_regular : Fact (regular E)] {m : Measure} (u : Open E) (a : Sublocale E) :

              leroy Lemme 4:

              Leroy Corollary 1

              theorem le_iSup_mem {E : Type u_4} [e_frm : Order.Frame E] (s : Set (Open E)) (a : NNReal) (f : Open ENNReal) :
              (∀ bs, f b a)bs, f b a
              theorem iSup_mem_eq {E : Type u_4} [e_frm : Order.Frame E] (s : Set (Open E)) (f : Open ENNReal) (h_top : ∀ (a : Open E), f a f ) :
              bs, f b = sSup (Set.range fun (b : s) => f b)
              theorem Measure.inf_filtered {E : Type u_4} [e_frm : Order.Frame E] [e_regular : Fact (regular E)] {m : Measure} (A : Sublocale E) (s : Set (Open E)) (h : increasingly_filtered s) :

              Leroy Lemme5

              theorem Measure.inf_commutes_sSup {E : Type u_4} [e_frm : Order.Frame E] [e_regular : Fact (regular E)] {m : Measure} (A : Sublocale E) (s : Set (Open E)) (h : increasingly_filtered s) :