Equations
- U ≪ V = (U.closure.toSublocale ≤ V.toSublocale)
Instances For
Equations
- «term_≪_» = Lean.ParserDescr.trailingNode `«term_≪_» 100 101 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol " ≪ ") (Lean.ParserDescr.cat `term 101))
Instances For
theorem
Closed.eq_intersection_opens
{E : Type u_4}
[e_frm : Order.Frame E]
[e_regular : Fact (regular E)]
(U : Open E)
:
theorem
Sublocale.intersection_Opens
{E : Type u_4}
[e_frm : Order.Frame E]
[e_regular : Fact (regular E)]
(a : Sublocale E)
:
theorem
Sublocale.intersection_Open_Neighbourhhood
{E : Type u_4}
[e_frm : Order.Frame E]
[e_regular : Fact (regular E)]
(a : Sublocale E)
:
Leroy Lemme 2.2 TODO stone spaces als quelle vlt Seite 81. 1.2 Maybe depends on: Nucleus.eq_join_open_closed
theorem
Sublocale.intersection_Neighbourhood
{E : Type u_4}
[e_frm : Order.Frame E]
[e_regular : Fact (regular E)]
(a : Sublocale E)
:
theorem
Measure.add_complement
{E : Type u_4}
[e_frm : Order.Frame E]
[e_regular : Fact (regular E)]
{m : Measure}
(U : Open E)
:
Leroy Lemme 3
noncomputable def
Measure.restrict_open
{E : Type u_4}
[e_frm : Order.Frame E]
(m : Measure)
(w : Open E)
:
Equations
- m.restrict_open w x = m.toFun (x ⊓ w)
Instances For
theorem
Measure.restrict_mono
{E : Type u_4}
[e_frm : Order.Frame E]
{m : Measure}
{w : Open E}
(U V : Open E)
:
U ≤ V → m.restrict_open w U ≤ m.restrict_open w V
theorem
Measure.restrict_pseudosymm
{E : Type u_4}
[e_frm : Order.Frame E]
{m : Measure}
{w U V : Open E}
:
theorem
Measure.restrict_filtered
{E : Type u_4}
[e_frm : Order.Frame E]
{m : Measure}
{w : Open E}
(s : Set (Open E))
:
increasingly_filtered s → m.restrict_open w (sSup s) = sSup (m.restrict_open w '' s)
noncomputable def
Measure.restrict_open_measure
{E : Type u_4}
[e_frm : Order.Frame E]
(m : Measure)
(w : Open E)
:
Equations
- m.restrict_open_measure w = { toFun := m.restrict_open w, empty := ⋯, mono := ⋯, strictly_additive := ⋯, filtered := ⋯ }
Instances For
Equations
- Open_Interiors u = {w : Open E | w.toSublocale ≤ u}
Instances For
theorem
Measure.add_complement_inf
{E : Type u_4}
[e_frm : Order.Frame E]
[e_regular : Fact (regular E)]
{m : Measure}
(u : Open E)
(a : Sublocale E)
:
leroy Lemme 4:
theorem
Measure.restrict_subadditive
{E : Type u_4}
[e_frm : Order.Frame E]
[e_regular : Fact (regular E)]
{m : Measure}
{U V : Open E}
{A : Sublocale E}
:
caratheodory (A ⊓ (U.toSublocale ⊔ V.toSublocale)) = caratheodory (A ⊓ U.toSublocale) + caratheodory (A ⊓ V.toSublocale) - caratheodory (A ⊓ U.toSublocale ⊓ V.toSublocale)
Leroy Corollary 1
theorem
Measure.inf_filtered
{E : Type u_4}
[e_frm : Order.Frame E]
[e_regular : Fact (regular E)]
{m : Measure}
(A : Sublocale E)
(s : Set (Open E))
(h : increasingly_filtered s)
:
Leroy Lemme5
theorem
Measure.inf_commutes_sSup
{E : Type u_4}
[e_frm : Order.Frame E]
[e_regular : Fact (regular E)]
{m : Measure}
(A : Sublocale E)
(s : Set (Open E))
(h : increasingly_filtered s)
: