def
Sublocale.embed
{E' : Type u_1}
[Order.Frame E']
{A : Sublocale E'}
(b : Sublocale ↑(Image A))
:
Sublocale E'
Equations
- Sublocale.embed b = { toFun := fun (x : E') => f_untenstern (Nucleus.frameHom A) (b ((Nucleus.frameHom A) x)), map_inf' := ⋯, idempotent' := ⋯, le_apply' := ⋯ }
Instances For
theorem
Sublocale.embed_open_eq_inf
{E' : Type u_1}
[Order.Frame E']
(A : Sublocale E')
(u : Open ↑(Image A))
:
theorem
Sublocale.embed_open_sup
{E' : Type u_1}
[Order.Frame E']
(A : Sublocale E')
(u v : Open ↑(Image A))
:
theorem
Sublocale.embed_open_sSup
{E' : Type u_1}
[Order.Frame E']
(A : Sublocale E')
(s : Set (Open ↑(Image A)))
:
@[simp]
theorem
Nucleus.frameHom.of_coe
{E' : Type u_1}
[Order.Frame E']
(A : Sublocale E')
(i : ↑(Image A))
:
Equations
- A.restrict b h = { toFun := fun (x : ↑(Image A)) => (Nucleus.frameHom A) (b ↑x), map_inf' := ⋯, idempotent' := ⋯, le_apply' := ⋯ }
Instances For
theorem
Sublocale.embed_le
{E' : Type u_1}
[Order.Frame E']
(A : Sublocale E')
(b : Sublocale ↑(Image A))
:
theorem
Sublocale.restrict_embed
{E' : Type u_1}
[Order.Frame E']
(A : Sublocale E')
(b : Sublocale ↑(Image A))
:
theorem
Sublocale.embed_restrict
{E' : Type u_1}
[Order.Frame E']
(A b : Sublocale E')
(h : b ≤ A)
:
Equations
- A.restrict_open u = { element := (Nucleus.frameHom A) u.element }
Instances For
theorem
Sublocale.embed_restrict_open
{E' : Type u_1}
[Order.Frame E']
(A : Sublocale E')
(u : Open E')
:
theorem
Sublocale.restrict_open_eq_restrict
{E' : Type u_1}
[Order.Frame E']
(A : Sublocale E')
(u : Open E')
:
theorem
Sublocale.Image_regular'
{E' : Type u_1}
[Order.Frame E']
[e_regular : Fact (regular E')]
(A : Sublocale E')
:
TODO woanders
noncomputable def
Measure.restrict_sublocale
{E' : Type u_1}
[Order.Frame E']
(A : Sublocale E')
(m : Measure)
:
Equations
Instances For
noncomputable def
Measure.restrict_sublocale_measure
{E' : Type u_1}
[Order.Frame E']
(A : Sublocale E')
(m : Measure)
[Fact (regular E')]
:
Equations
- Measure.restrict_sublocale_measure A m = { toFun := Measure.restrict_sublocale A m, empty := ⋯, mono := ⋯, strictly_additive := ⋯, filtered := ⋯ }