Documentation
banach_tarski
.
Equidecomposable
.
Equi_Kreis
Search
Google site search
return to top
source
Imports
Init
banach_tarski.Lemma_3_1
banach_tarski.Equidecomposable.Def
banach_tarski.Equidecomposable.Rotations
Imported by
S
A
B
A_and_B_eq_S
rotate_A_B_eq_S
equi_kreis
source
def
S
:
Set
r_3
Equations
S
=
{
x
:
r_3
|
x
2
=
0
∧
x
0
^
2
+
x
1
^
2
=
1
}
Instances For
source
def
A
:
Set
r_3
Equations
A
=
{
w
:
r_3
|
∃ (n :
↑
{
x
:
ℕ
|
x
>
0
}
),
w
=
![
Real.cos
(
↑
↑
n
*
sq_2
)
,
Real.sin
(
↑
↑
n
*
sq_2
)
,
0
]
}
Instances For
source
def
B
:
Set
r_3
Equations
B
=
(
S
\
{
![
1
,
0
,
0
]
}
)
\
A
Instances For
source
theorem
A_and_B_eq_S
:
A
∪
B
=
S
\
{
![
1
,
0
,
0
]
}
source
theorem
rotate_A_B_eq_S
:
rotate_set
A
gl_sq_2
∪
rotate_set
B
gl_one
=
S
source
theorem
equi_kreis
:
equidecomposable
(
S
\
{
![
1
,
0
,
0
]
}
)
S