Documentation

Leroy.Measure.Reduction

def e_μ {E : Type u_1} [Order.Frame E] (m : Measure) (u : E) :
E
Equations
Instances For
    theorem e_μ_Measure_eq {E : Type u_1} [Order.Frame E] (m : Measure) (u : E) :
    m.toFun { element := e_μ m u } = m.toFun { element := u }
    theorem e_μ_idempotent {E : Type u_1} [Order.Frame E] (m : Measure) (x : E) :
    e_μ m (e_μ m x) e_μ m x
    theorem e_μ_le_apply {E : Type u_1} [Order.Frame E] (m : Measure) (x : E) :
    x e_μ m x
    theorem e_μ_mono {E : Type u_1} [Order.Frame E] (m : Measure) (x y : E) :
    x ye_μ m x e_μ m y
    theorem e_μ_map_inf {E : Type u_1} [Order.Frame E] (m : Measure) (x y : E) :
    e_μ m (x y) = e_μ m x e_μ m y
    def μ_Reduction {E : Type u_1} [Order.Frame E] (m : Measure) :
    Equations
    • μ_Reduction m = { toFun := e_μ m, map_inf' := , idempotent' := , le_apply' := }
    Instances For
      theorem Measure.μ_Reduction_le_if {E : Type u_1} [Order.Frame E] (m : Measure) (U : Sublocale E) :
      (∀ (i : E), m.toFun { element := U i } = m.toFun { element := i })μ_Reduction m U
      noncomputable def R_μ {E : Type u_1} [Order.Frame E] {m : Measure} [Fact (regular E)] (A : Sublocale E) :
      Equations
      Instances For
        theorem Measure.preserves_iInf {E : Type u_2} [Order.Frame E] [Fact (regular E)] {m : Measure} (V_n : Open E) (h : Antitone V_n) :

        Leroy Lemma 6

        theorem ENNReal.tendsto_atTop' {β : Type u_2} [Nonempty β] [SemilatticeSup β] {f : βENNReal} {a : ENNReal} (ha : a ) :
        Filter.Tendsto f Filter.atTop (nhds a) ε > 0, ε ∃ (N : β), nN, f n Set.Icc (a - ε) (a + ε)
        def rec' {E : Type u_2} [Order.Frame E] (seq : Open E) :
        Open E
        Equations
        Instances For
          theorem Measure.caratheodordy.preserves_iInf {E : Type u_2} [Order.Frame E] [Fact (regular E)] {m : Measure} {ι : Type u_3} [Nonempty ι] (A_i : ιSublocale E) (h : decreasingly_filtered A_i) :

          Leroy lemme 7