Equations
- μ_Reduction m = { toFun := e_μ m, map_inf' := ⋯, idempotent' := ⋯, le_apply' := ⋯ }
Instances For
theorem
Measure.μ_Reduction_le_if
{E : Type u_1}
[Order.Frame E]
(m : Measure)
(U : Sublocale E)
:
(∀ (i : E), m.toFun { element := U i } = m.toFun { element := i }) → μ_Reduction m ≤ U
theorem
Measure_Neighbourhood_μ_eq_top
{E : Type u_1}
[Order.Frame E]
(m : Measure)
(V : Open E)
:
V ∈ (μ_Reduction m).Open_Neighbourhood → m.toFun V = m.toFun ⊤
theorem
μ_Reduction_eq_sInf_Sublocale
{E : Type u_1}
[Order.Frame E]
[Fact (regular E)]
(m : Measure)
:
theorem
μ_Reduction_le_of_top
{E : Type u_1}
[Order.Frame E]
[Fact (regular E)]
(m : Measure)
(A : Sublocale E)
(h : Measure.caratheodory A = m.toFun ⊤)
:
theorem
embed_measure_open
{E : Type u_1}
[Order.Frame E]
{m : Measure}
[Fact (regular E)]
(A : Sublocale E)
(b : Open ↑(Image A))
:
theorem
embed_measure
{E : Type u_1}
[Order.Frame E]
{m : Measure}
[Fact (regular E)]
(A : Sublocale E)
(b : Sublocale ↑(Image A))
:
theorem
Measure.preserves_iInf
{E : Type u_2}
[Order.Frame E]
[Fact (regular E)]
{m : Measure}
(V_n : ℕ → Open E)
(h : Antitone V_n)
:
Leroy Lemma 6
theorem
ENNReal.tendsto_atTop'
{β : Type u_2}
[Nonempty β]
[SemilatticeSup β]
{f : β → ENNReal}
{a : ENNReal}
(ha : a ≠ ⊤)
:
Filter.Tendsto f Filter.atTop (nhds a) ↔ ∀ ε > 0, ε ≠ ⊤ → ∃ (N : β), ∀ n ≥ N, f n ∈ Set.Icc (a - ε) (a + ε)
theorem
Measure.caratheodordy.preserves_iInf
{E : Type u_2}
[Order.Frame E]
[Fact (regular E)]
{m : Measure}
{ι : Type u_3}
[Nonempty ι]
(A_i : ι → Sublocale E)
(h : decreasingly_filtered A_i)
:
Leroy lemme 7
theorem
Measure.caratheodory.strictly_additive
{E : Type u_2}
[Order.Frame E]
[Fact (regular E)]
{m : Measure}
(A B : Sublocale E)
:
theorem
Beispiel
{E : Type u_2}
[Order.Frame E]
[Fact (regular E)]
{m : Measure}
(A B : Sublocale E)
:
Measure.caratheodory (A ⊔ B) = Measure.caratheodory A + Measure.caratheodory B - Measure.caratheodory (A ⊓ B)